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FOREWORD

The typical few-of-a-kind nature of NASA systems has made reliability a premium
en on the initial items delivered in a program. Reliability defined and treated on
. basis of percentage of items operating successfully has much less meaning than
aen larger sample sizes are available as in military and commercial products. Relia-
ility thus becomes based more on engineering confidence that the item will work as
intended. The key to reliability is thus good engineering--designing reliability
_ into the system and engineering to prevent degradation of the designed-in reliability
from fabrication, testing and operatiom.

The PRACTICAL RELIABILITY series of reports is addressed to the typical engineer
to aid his comprehension of practical problems in engineering for reliability. 1In
these reports the intent is to present fundamental concepts on a particular subject in
an interesting, mainly narrative form and make the reader aware of practical problems
in applying them. There is little emphasis on describing procedures and how to
implement them. Thus there is liberal use of references for both background theory
and cookbook procedures. The present coverage is limited to five subject areas:

Vol. I. - Parameter Variation Analysis describes the techniques for treating

the effect of system parameters on performance, reliability, and other figures-
of-merit.

Vol. II. - Computation considers the digital computer and where and how it can

be used to aid various reliability tasks.

Vol. III. - Testing describes the basic approaches to testing and emphasizes

the practical considerations and the applications to reliability.

Vol. IV. - Prediction presents mathematical methods and analysis approaches

for reliability prediction and includes some methods not generally covered in
texts and handbooks.

Vol. V. - Parts reviews the processes and procedures required to obtain and

apply parts which will perform their functions adequately.

These reports were prepared by the Research Triangle Institute, Research Triangle
Park, North Carolina 27709 under NASA Contract NASw-1448. The contract was adminis-
tered under the technical direction of the Office of Reliability and Quality
Assurance, NASA Headquarters, Washingtom, D. C. 20546 with Dr. John E. Condon,
Director, as technical contract monitor. The contract effort was performed jointly
by personnel from both the Statistics Research and the Engineering and Environmental
Sciences Divisions. Dr. R. M. Burger was technical director with W. S. Thompson

serving as project leader.

iii



This report is Vol. IV - Prediction. This subject has been of interest in
reliability work since the earliest efforts of organized reliability activity. In
these ensuing years much has been written on reliability prediction, but often the
item concentrates on limited facets of the subject. This report synthesizes
reliability prediction, with emphasis on the basics and the scope. C. A. Krohn
selected and organized the contents, and together with A. C. Nelson, Jr. prepared

the material. W. S. Thompson provided helpful comments.
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ABSTRACT

The features and techniques of reliability prediction are identified and brought
together in this report. The approach is to:

(a) Bring together scattered material,

(b) Present some material not in books or handbooks,

(c) Identify several points which have a tendency to be missed,
- (d) Present some ideas which may be helpful to others involved in develop~

ment of reliability prediction techmiques, and

(e) Express some opinions related to the role of reliability prediction.

Material presented in this report is grouped into four major categories.
Part I is largely qualitative discussion concerned with introduction and perspective.
Contents include discussion and opinions on the role of reliability prediction, on
perspective features, e.g. program phase and hardware level, on the relation to other
analyses, and on the problems. Part II is concerned with reliability measures or
definitions concerning single items, including data sources. Part III is devoted to
the reliability prediction techniques which are suitable for general use and to
classical reliability models. This material is scattered throughout the references;
the treatment here mainly identifies approaches and relates them, with
reliance on the references. Included for multi-item models are logic, lifetime,
environment and bound-crossing topics. The remaining Part IV is concerned with
concepts related to the detailed treatment of failure modes without independence
assumptions. This is food-for-thought material from the results of research on
reliability prediction techniques. This material in Part IV, in general, is not
suited for widespread application. The Appendix presents a ready-reference on some

basic probability laws and on various probability distributions.
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PRECEDING PARE B PREFACE

In this report the subject of reliability prediction is synthesized. It is
an attempt to "see the forest', but done while keeping both feet on the ground.
Fundamentals are stressed in order to help develop a better understanding of what is
involved. Expanded treatment is given to basic reliability measures, to some points
which have a tendency to be somewhat misunderstood in the literature, and to several
topics which are not covered in existing books and handbooks but where RTI has delved
into them. Other topics are identified and related to one-another.

Reliability prediction as an organized discipline is approximately 15 years
old. There are approximately a dozen books on the subject and approximately the same
number of handbooks. There are many hundreds of reports and papers. Some which
treat the fundamentals will be relied on heavily.

The qualitative discussion of Part I on the scope of reliability prediction is
suitable for any reader - design engineer, manager, reliability generalist, or
reliability analyst. Parts II and III cover mainly conventional and classical
approaches to reliability prediction and Part IV reports on some research on struc-
turing certain detail into a prediction. Parts II, 1IT and IV will not be easy reading
for persons who are not knowledgeable in the mathematics of probability. Of course
perusing these parts will give any reader a flavor of the subject. If a reader
wants to understand the subject he will have to study the material as introduced here
and as elaborated in the references. 1f he does not know the mathematics of probabilit
then he will first need to learn its fundamentals. The practlcing reliability analyst
should be familiar with most of the contents. For him, perhaps the manner in which
the material is organized, the jdentification of references, and the results of

research on reliability prediction techniques in Part IV will be of interest.
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Part I: Perspective

Reliability is the moniker which has been attached to those questions concerning
whether or not an item will perform its intended function when it is ultimately used.
Different ways of expressing a reliability index will be described later; some of the
more commeon are mean time between failure, reliability, or failure rate. Reliability
is different from traditional performance concerning explicit quantitative require-
ments; a reliability requirement can be avoided by just not introducing it. As long
as the resultant item has subjectively acceptable reliability, then there is no concern.
On the other hand, if the item turns out to be excessively failure prone, "What went
wrong?" There was no requirement...there was no analysis...there was no measurement,
even if this last task was plausible.

The current tendency is to treat this question quantitatively to the maximum
extent which is "sensible;" otherwise the risk of unacceptable reliability is higher
than is necessary. When either the initial requirements for an item are being pre-
pared or are being responded to, they will typically contain a reliability index.
Treating reliability quantitatively brings the subject into open consideration. By
explicitly treating reliability the designers will think about what is needed to
fulfill the requirement. This considerably enhances the odds of getting something
useful and on schedule.

Even if an individual or a designer is not convinced of the need for quantita-
tive treatment of reliability, he still cannot avoid the subject nor the need for
some knowledge of it. When the designer is associated with the organization which
will actually use the item, often the management pressure for a minimum total owner-
ship cost compels quantitative reliability analysis by procedural requirements. When
the designer is associated with an organization which is providing items to customer
requirements, then there will usually be a quantitative reliability requirement and
less often a specified procedure for measuring reliability. The pressure of this
contractual requirement may be further increased if the contract is fixed price or
has a fee incentive for measured reliability.

In the early days of an engineering project the situation is such that treatment
of chance is with probabilistic modeling. As the new designs evolve into physical
items and measurements are made from testing, the situation changes into one where
the treatment of chance is alsc with statistical inference. The material presented
in this report is probabilistic. Measurement of reliability and the use of statisti-

cal inference is given some coverage in Vol. III - Testing of this Report Series.



1. Treating Reliability Quantitatively
This section contains some definitions and discussion of the role, uses and

accuracy of reliability prediction.

1.1 NASA Definition of Reliability

Reliability is defined in NASA Reliability Publication NPC 250-1 as: the proba-
bility that a system, subsystem, component or part will perform its intended functions
under defined conditions at a designated time for a specified operating period [Ref. 1].
This definition will be used in this report. In the discussions the system, subsystem,
component, or part will simply be réferred to as a system or an item. When item
is used, the material under discussion is potentially pertinent to any hardware level

of aggregation. Multi-item or system will be used for bringing items together.

1.2 Probabilistic Approach

Reliability, in the quantitative sense as used here, is defined above as a
probability. Perhaps another quantitative definition of reliability will evolve
in the future which is not based on probabilistic concepts. For the present, however,
it seems that quantitative treatment of reliability will involve probability and
statistical inference. In one sense, this is unfortunate, as many engineers and
managers have not had meaningful academic or other exposure to this subject. The
subject is no more difficult than other ones of mathematics, but as with the other
ones, it does take continued exposure to 1t over a period of time in order to be
comfortable and confident with it.

The material in this report relies on the basic probability concepts and laws
which are briefly reviewed in the Appendix. The reader is encouraged to review them
and, if this is new material to study the references of the Appendix or other modern
books on probability. In particular, the plea is made to avoid what seems to be
a tendency to pick-up a few formulas such as some from Parts II and III and to over-
generalize their applicability. Rather, rely more on the fundamentals of the Appendix.
To the engineers, do not be hesitant about seeking consultation from a probabilistic
mathematician or a statistician.

The terms probability and statistical inference were used in the preceding
paragraph. Probability is used in reference to an a priori situation, where assumptions
are made concerning the probability descriptions of input information. Probability
predicts the outcome from a set of assumptions. Statistical inference is used in
reference to an a posteriori situation, where data is used to make inferences about
the form of the distribution and to make estimates about the parameters of the distri-

bution. Thus, probability is deductive and statistics is inductive.



1.3 Role

Reliability predictions may be performed for any of the following reasons:

(1) Potential technical contribution,

(2) Financial implications, and

(3) Compulsory.
Each of these could apply to the user (or buyer) of a system as well as to the supplier.
The potential technical contribution is the most satisfying reason to the engineer.
For example, he may decide to search for areas needing reliability improvement. How-
ever, the other reasons do occur. Financial implications arise in a fixed price or
incentive contract which also has an associated reliability requirement and method
of measurement. The compulsory reason may typically apply to a government agency
because of policy and to a supplier because of contract requirements. There is nothing
derogatory about any of these reasons; each has a role in the mature blending of tech-

nology, competition, and checks and balances.

1.4 Uses

Major uses of reliability prediction are:

(1) To obtain a numerical value of a reliability index,

(2) To obtain a numerical measure of uncertainty of the reliability prediction

value,

3 To search for needed improvements in the design or the operational procedure,

(4) To allocate total system reliability optimally to the sub-items.
The numerical reliability prediction number and its attendant measure of uncertainty
are usually necessary in order to respond to any of the reasons for performing a pre-
diction which are noted above. That is, response to such questions as "Can the
mission be achieved?" or '"What are the possibilities of making a profit?" or simply
here is what the customer asked for. Searching for reliability improvements and
probing around for weaknesses in the design and the operational procedure is the most
technically appealing use. It is this use that often results in a reliability pre-
diction going into more detail than it otherwise might. That is, comparative detailed
values are sought rather than absolute gross values. Hopefully new alternatives will
be opened up and the really bad choices can be eliminated. Literal optimization tech-
niques, such as dynamic programming algorithms, offer the potential of improved allo-
cation of overall reliability among the items comprising the system. Of these uses,
obtaining the prediction number and searching for improvements have seen more appli-

cation than the other two.

1.5 Accuracy

With the extensive experience accumulated with reliability prediction, it is



now possible to make some intelligent judgments on accuracy even if only qualitative.
When there is a fair amount of historical data and the equipment is not excessively
complex or new, a crude rule-of-thumb for electronic equipment would be to expect
the actual mean time between failure (MTBF) to be within the range of 50 to 200 percent
of the predicted MTBF. This accuracy would apply to the case of an experienced analyst
making his best effort, i.e., one which is not unduly optimistic or pessimistic.
At the equipment level and the parts level, it is often possible to give the most
accurate prediction possible with only a small amount of effort. That is, the point
of diminishing returns is quickly reached in reliability predictions as far as the
accuracy of the prediction number is concerned. It must be noted that the prediction
analysis will usually go into more detail in searching for reliability improvements.
If the inputs, the tools, and the assumptions of the reliability predictions are
reasonably accurate and understood, then there is no reason why the results should
not be able to be appraised so that the prediction can be intelligently used.

The competitive nature of the buyer-seller enviromment quite understandably
has an influence on the accuracy of reliability prediction. There is probably a
tendency to get more accurate predictions, at least more conservative ones, if there
exists a firm reliability requirement, a method of reliability measurement, and firm
dollar implications. Those who use reliability predictions of others, e.g. those
at higher levels of system aggregation, must realize that those at the lower levels
will tend to present predictions which will make the supplier look best at the time
the prediction is made. That is, the equipment supplier will often not account for
rough handling, for unverified failures on the part of the operators, for unforeseen
environments, or possibly for burn-in. A final remark on the accuracy of reliability
prediction is the realization that other system characteristics such as cost, schedule,
repair time, or even performance tend to have inaccurate predictions at the early
stages in the life cycle. As the program progresses through the life cycle there
is an opportunity to measure some of these characteristics, whereas reliability may

never really be able to be accurately measured.



2, Prediction and Allied Approaches

In this section the classical reliability prediction techmniques and those which
are suitable for active program usage are briefly identified by key words. Also,
selection of a particular technique and other analyses related to reliability prediction
are briefly discussed. Parts II and III of this report will give further introduction
to the reliability prediction techniques which are only cited here. The purpose

is to identify reliability predictions approaches and to fit them into related analyses.

2.1 Prediction Techniques

Figure 2-1 shows key words associated with reliability measures of single items
and Fig. 2-2 does the same for the conventional and classical reliability prediction
modeling approaches for multi-item systems. The sections of this report where the
topic is covered are cited on the figures. Broadly speaking, the single item measures
of Fig. 2-1 can apply to various levels of system aggregation, e.g., parts,
equipment, and system levels as well as to human events. That is, they offer indices
by which to describe some of the inputs to a multi-item reliability prediction and
by which to express some of the outputs.

Reliability predictions implemented with the approaches of Figs. 2-1 and 2-2
have typical assumptions and characteristics. Quite often these are unstated; they
are just implied. Some typical assumptions and characteristics are:

(1) A "fuzzy" definition of the failure of items and system, is it: Out of

specification? Simply inoperative? Complete catastrophic failure?

(2) The prediction usually considers each item involved to have two states,
either good or bad. In most predictions this is reasonable; however,
there are certain situations where this can lead to grossly incorrect
results. A familiar example is ignoring the two failed states of open
or short of diodes in redundant arrangements.

(3) Independence among items is liberally assumed. Included here is the
impact of not considering uncertainty in the natural or induced environ-
ments.

(4) Prediction is for a mature product. A prediction is quite often mute
on the assumption that most design and manufacturing "goofs" have been
removed and that the necessary burn-in period has been passed. This has
serious implications for items such as those intended for space which
are produced in small quantity.

(5) Omission of the human element during operation.

(6) Uncertainty in the parameters of single items are often not considered
explicitly. Techniques of sensitivity analysis and of probabilistic
treatment of uncertainty are potentially applicable.
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Of course, exceptions in particular predictions will exist for these typical assump-

tions and characteristics. These apply to the majority, not the exceptional case.

2.2 Prediction Technique Choice

The approach used for a particular prediction is influenced by a myriad of
factors. Implications of some factors such as the commodity and its intended opera-
tional profile tend to be somewhat apparent. Here the need is mainly that of knowledge )
about the various reliability prediction indices and equations of the sort noted
in Figs. 2-1 and 2-2. Other factors such as schedule and the extent of the intended
reliability program are more subjective in their implications. Here the influence
is more on the choice of parameter values rather than the choice of equations.

There is little which can be said on applying this technique to this situation
and that technique to that situation which is not apparent to someone who understands
what you are talking about. About all that seems appropriate is a plea to use common
sense, e.g., use the simplest approach commensurate with the purpose of the analysis
and the accuracy of the parameter data.

Life Cycle. Reliability prediction plays its major role during the planning
and early design phases of a program's life cycle. In these earlier phases of the
program a priori techniques of the sort described in this report are used. It can
be expected that there will be many iterations of a prediction as the program pro-
gresses, and that the prediction model will become more complex. When the program
progresses to the point that test and operational data start to become available,
then the a priori prediction techniques start to give way to the a posteriori tech-
niques of statistical inference. The reliability prediction model still has a role.
It provides a means for combining statistical inference estimates on items into a
composite measure for multi-item levels.

Commodity Considerations. Reliability prediction at the nonrepairable part

level is largely a matter of selection of the appropriate form from Part II by which
to express the reliability measure. This includes the designation of the stresses
which are appropriate. At the equipment level, say in the order of hundreds of piece
parts, the main consideration as to what technique is used depends largely on whether
the equipment is electrical or non-electrical. Electronic equipment typically uses

a very straightforward approach. The parts are assumed to have a constant failure
rate and failure rates are added to obtain the failure rate (or its reciprocal mean-
time-between failure) for the equipment (See Sec. 8.1.1). This approach is also
sometimes used for nonelectrical commodities, but often more involved prediction
techniques will be applied to mechanical or structural commodities. The stress-

strength approaches of Secs. 5.3 and 9.2 are structurally oriented, but they are

)



really specialized applications of broadly applicable approaches concerning environ-
ment effects which are noted in Secs. 4.4 and 9.1. At the system level the techniques
which are used tend to be quite varied and the entire scope of Part III is applicable.

Mission Implications. The operational time periods and the environments of

the operational profile, of course, affects the choice of the reliability prediction
technique. Space systems have been thus far of a one-shot nature with the main periods
of launch, orbit, and recovery. Launch and recovery environments tend to be somewhat
severe, whereas orbital environments tend to be moderate. A major constraint handicapping
reliability measurement prior to use has been the combined effects of the lack of
experience, the cost, and the small quantity of some commodity types. The decade

of space experience has alleviated these conditions to some extent. However, presently
the nature of space missions is being extended to deep space missions and eventually

to commodities reusable after recovery. Thus an increasing number of one-shot, non-
reusable commodities are on the verge of giving way to multiple use, repairable com-
modities. Space reliability predictions will thus start to take on more of a similarity
to predictions for systems intended for airborne and surface missions. These latter
types are as much concerned with the implications of repair, that is maintainability,
as they are with reliability. The typical airborne system which is not operating
continuously is desired to have a very high overall availability followed by a very
high reliability for relatively short missions. The overall availability here is

of a continuous nature and the missions are of a cyclic nature. Systems for surface
missions often are continuously operational, but they can quite often be removed

from operation for repair or maintenance. However, they usually will have short
periods of intense operation where no repair is possible. These short periods may

be somewhat predictable, as for space-oriented services, or they may be nonpredictable
as for military uses. Presentations on maintainability and availability prediction
techniques are available in Refs. 2 and 3.

Subjective Factors. The ultimate accuracy is primarily affected by the subjective

judgment of the person performing the reliability prediction. Main considerations
are the kind of reliability program with attendant influences of budget, schedule,
and the operational enviromment. Historical experience in reliability prediction,
particularly where it has been followed up with reliability measurements, have helped
considerably in this area. Detailed listings have been made of the many variables
which are pertinent [Ref. 4] but in the final analysis this is largely a matter of

mental assimilation on the part of the person performing the prediction.

2.3 Related Analyses
Other types of analyses overlap and interface with reliability predictions.



Brief comments are given below on these allied studies. The comments are aimed pri-
marily toward the equipment and system level of commodity complexity, and particularly
toward the latter. System effectiveness is currently a popular phrase which is used
to cover the scope of the considerations cited below. Some system effectiveness
models have been proposed which attempt to pull together the appropriate ingredients
[Refs. 5 and 6]. This is possible to some extent with the gross models and their
attendant assumptions. A system effectiveness analysis will typically reflect the
effort of various individuals as it is unlikely that any one individual can master

or have the time to perform all of the analysis areas intended in any one program.

Other Reliability Analyses. During the planning and early design program phases

the other reliability analyses, in addition to prediction, can be classified into

failure mode and effects, performance variation, and stress as suggested in Ref. 7.
Failure mode and effects analyses are often probing to a level of detail which is

not reflected in the reliability prediction model. It is often of a semi-qualitative
nature. It is conceptually possible to reflect extremely detailed failure modes

into reliability prediction.* However, there are usually the practical reasons of

the unavailability of data and the complexity of such models which prevent a literal
one-to-one correspondence between the failure mode and effects analysis and a reliability
prediction.

The performance variation analysis is concerned with the area of reliability
prediction which in this report is referred to as bound-crossing. The reliability
discipline has promoted approaches for drift failure analysis of electronic circuits
which are commonly referred to as worst-case or as tolerance analysis techniques.

These have proved to be of value for purposes of reliability improvement. However,
they almost invariably are not extrapolated over into the reliability prediction
analysis. Again this is conceptually possible but usually not done for sound reasons.*
It should be noted that with mechanical and structural commodities there has been
greater use made of bound-crossing techniques for reliability prediction purposes.

A prominent example here would be the classical stress-strength model. Those which

are conventional or classical are noted in Parts II and III of this report.

Stress analysis typically has the most explicit relationship with a reliability
prediction.* This is because many of the reliability prediction manuals include the
applicable stress derating and failure rate adjustment tables and curves. Examples
are the effect of temperature, current or wattage levels on the failure rate. In
the nonelectronic commodity the stress-strength model would be an example of a technique

which is common to stress and prediction analysis.

* Part IV of this report presents some thoughts on structuring a detailed reliability
prediction model which explicitly incorporates this detail.

10



Conventional Design Analyses. These traditionally involve both performance and

stress calculations and are what the design engineer would do to some extent regard-
less of whether he is explicitly concerned with reliability analysis. The performance
analysis is mainly related to the bound-crossing type of reliability measure and to the
performance variation analysis. The traditional deterministic, engineering equations,
relating performance attributes to part characteristics and other variables, become

part of the performance variation analysis. Similarly, the traditional deterministic
stress equations are developed and used by the designers. Calculation of safety margins
to such factors as voltage, power and temperature is a familiar form of this type of
stress investigation.

Safety. Systems analyses for manned space missions have always been directed
toward both safety and reliability. In terms of the impact on the reliability predic-
tion model, it usually turns out that the same, or slightly modified, prediction approach
will serve the safety prediction needs as well as those of reliability. For safety
there will typically be a different criterion of failure and a different operational
profile than for reliability. Also note that in nonspace types of systems, safety
analyses are also being performed [Ref. 8].

Availability and Maintainability. When repair is possible during application,

then availability and maintainability cannot be avoided in the prediction. This adds
a measure of complexity to the prediction technique, as the reliability prediction
literally becomes absorbed by the availability prediction. Some comments have pre-
viously been made on these analyses in Sec. 2.2 under the heading of Mission Implications.
Spares. Reliability prediction techniques have been experiencing increased
applications in spares planning and optimization. These may seem to be inseparable;
nevertheless, reliability analysis and spares analysis have been traditionally performed
by separate groups. Furthermore there are reasons which from the spares viewpoint
cause items to have higher failure rates than from the operational viewpoint. Examples
here would be the effects of secondary failures and the replacement of incorrectly
diagnosed failures. It is also noted that optimum spares allocation and optimum
redundancy allocations can use identical approaches.

Cost Trade-off. If cost-reliability relationships are available for single items,

then for some forms of multi-item configurations the literal optimization techniques
can be applied in order to obtain optimum reliability values for items. Also, to some
limited extent this can be expanded to include simultaneous optimization of reliability
and spares or reliability and maintainability. The main limitations here are the
accuracy of the cost-reliability or cost-maintainability relationships and those of
optimization techniques. Note also that the optimum allocation techniques find
application for other penalties than cost, e.g., volume, weight, power, or perhaps

simultaneous treatment for several of these.
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The basic reliability allocation problem which is amenable to analytical solutiom
is that of selecting an optimum system configuration from allowable alternate design
approaches so that reliability is maximized subject to a penalty constraint, or vice-
versa. It is necessary to have a reliability prediction equation which covers the
range of allowable alternate design approaches and similarly a penalty prediction
equation. Thus one use of the suitable reliability prediction equations of this
report 1s to provide an input for a reliability allocation. An approach to this
problem can be developed based on the dynamic programming principle. As would be
expected exact solutions can be obtained from problems which are usually too simple
to be of practical value. For example, Ref. 9 gives a dynamic programming procedure
for selecting exactly the order of the active redundancy in the case of one constraint
and of the active form of redundancy. Procedures for more realistic problems can be
developed but they usually yield an approximate solution. However, the incompleteness
usually will not result in differences of practical importance.

Refs. 10 and 11 describe computerized approaches which are suitable for realistic
problems. The approach in Ref. 10 is for identifying an optimum redundancy configura-
tion where each item in the system can be active, standby with switch, or spare
redundancy. It is assumed that only one item must work, that the items have an
exponential failure distribution, and that the failure (or success) events for the items
are mutually independent. Ref. 11 treats essentially the same problem ignoring the

switch but introducing the non-serial, e.g., a "bridge," configuration. The former
paper is patterned after the results in Ref. 10 but allows for more practical
redundancy alternatives.

It was decided that the result given in Ref. 10 could be generalized to include
the case in which at least ng items must work out of n items (nO < n). In order to
do this it was necessary to derive a general reliability prediction formula for
parallel arrangements, as shown in Sec. 8.4. This formula has been computerized and
the program is discussed in Volume II - Computation. This program is actually a sub-
routine in the general Reliability Cost Trade-off Program (RECTA). The subroutine
enables one to consider majority voting redundancy as well as the three types of
redundant items as noted above. Practical procedures for obtaining an optimum selec-
tion of the reliability of items in series can also be based on a dynamic programming
procedure. This is where reliability improvement of an item is improved by such means
as design and manufacturing emphasis on reliability and redundancy is not allowed.
The largest difficulty here is obtaining an accurate relationship between item relia-
bility and cost. The general reliability cost trade-off program (RECTA) cited above
simultaneously treats configurations containing series and the various redundancy

approaches. Here the allowable alternative for an item includes increasing the
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reliability of the non-redundant item and/or making the item redundant. Any of these
alternatives can be disallowed, thus a generalized series-parallel reliability alloca-
tion procedure.

RECTA as cited above was developed as part of an evaluation of computer
programs for system effectiveness [Ref. 12]. This reference and other sources will
call attention to the possible use of allocation procedures based on linear and
quadratic programming and on Lagrange multipliers. These approaches have usually not

proven suitable for realistic reliability-~cost allocation problems.
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3. Needs and Problems

The largest need is that reliability prediction be included or be considered
as an essential element of the actual decision-making process. This is not just
a matter of design engineers and managers tolerating the reliability prediction,
but rather one where the desired situation 1is that these persons need and want the
results of the prediction. The reliability prediction should be influencing the
design and operating plans, rather than a separate exercise whose outputs are ignored
or forced to justify a preconceived design and operating plan. The problems here
are grouped into those concerning people, data, and techniques. These remarks are
not in the sense of criticizing anyone or any discipline; rather, they are intended

as unemotional commentary.

3.1 People

Reliability prediction utilizes heavily the mathematics of probability. Reli-

ability measurement and testing utilize the mathematics of statistical inference.

These are both complex subjects that are simply difficult to really learn. In addi-

tion to the practical knowledge required for applying them, the theory is also important.
The majority of technical persons, including designers, management, as well as reliability
engineers, typically have not had the opportunity to become well-versed in the mathematics
of probability and statistical inference prior to their initial attempts at using

them.

The solution here is not at all readily apparent. A probabillity or statistics
course or two in the college curriculum or a concentrated short course after college
really only helps the person communicate better with someone who is well-versed in
these subjects. Persons specifically trained in the mathematics of probability or
statistics, on the other hand, have their difficulties in understanding the engineering
applications. Such a person in a product-oriented organization will typically have
difficulty adjusting to the approximate nature of engineering mathematical models, to
the myriad of pertinent variables which cannot be reflected simultaneously in equations,
and to the situation that testing to satisfy statistical confidence often requires
unrealistically large sample sizes due to cost considerations.

There is some sentiment for having the design engineer also pick up the task
of reliability prediction and the other reliability analyses. There is much to be
said for this; after all, these persons, particularly at the equipment level, are
usually called upon to provide cost, weight, and other predictions in addition to
strict performance. It is generally accepted that the designer is 'responsible"
for "designing reliability" into the equipment; it follows that he should have some
degree of responsibility for the reliability analysis of his design. For electronic

equipment this may be a reasonable approach. Some few suppliers are doing this.
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They do not have reliability specialists, or if they do he performs the role of a
consultant. For structural and mechanical commodities and for systems, the reliability
prediction is more complex than for electronic equipment. The approach of having

the designer also perform the reliability prediction is more difficult here. Even

if management decides that the approach of having the designer perform the prediction
is desirable, it is still difficult to implement. These design people are already
generally overloaded in work schedules. Also, they may not be interested.

A nagging consideration to many persons is that the mathematics of probability
and statistics have enjoyed successful application in many areas, for example, communi-
cations, economics, biology, agriculture, and information theory. It seems that it
is the reliabillity area which perhaps uniquely has a somewhat unsuccessful history of
application of probability and statistics. At least the road here has been a lot
rougher than in other areas. One cannot help but feel that a major reason is that
many of the people who have been involved in reliability prediction - the people doing
them as well as other persons who are expected to use the results - have just been

weak in the theory and practical applications of probability and statistics.

3.2 Data

Data refers to the actual numerical value of reliability indices for various
items. Thus data, one way or another, revert back to some type of reliability
measurement. Even once the need is recognized, there is the problem of how to go
about making reliability measurements. What is the best index? The greater the
reliability of any item, the more difficult it is to measure. Who is to pay for it?

A part or equipment supplier often will deliver his product and will never hear any-
thing further regarding reliability, particularly if it is satisfactory. Experience
with the reliability measurements of operational items have indicated that it 1s near
impossible to rely on operational and maintenance personnel to supply this data;
special persons have to go along just to record the reliability information. 1In
addition, there is recognition of the situation that 1t is more glamorous to work
with models and equations than to try to record and interpret data.

Efforts, of course, have been made at gathering and disseminating data, and these
continue (Sec. 6 of this report contains some data references). These are to be
commended. Contractors are more and more developing their own data and making data
banks, but they are handicapped. More efforts are needed in the data area and of
necessity will require funding by various government agencies. Individual contractors
do not have wide access to operational sites, nor do they have much funding for this.
With regard to individual programs, there is a great opportunity for using sampling
techniques rather than to record everything, particularly with actual operating equip-

ment and systems, in order to gather needed information.
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3.3 Techniques

A few comments are given here on the area of reliability prediction technique
needs; however, this is not as large a problem area as those of people and data. Con-
flicting positions can be easily taken. On one hand, it can be said that more complex
techniques are not generally going to be applied because invariably better data is
needed. It is unlikely that such data will become generally available. On the other
hand, it can be argued that complex situations require complex mathematical models.

In any case, efforts will continue for technique development. It is something that

can be done individually and without major funding. It is the sort of thing that
people who are inclined in this direction will continue to do whether they have a great
deal of support or not.

Computers seems to continue to get faster with larger storage. This opens the
door to more involved and more complex analyses. Rationale-wise, there is a need to
cycle more practical experience back into the development of prediction techniques.
This is now becoming possible more than previously because of the increased experience
with reliability prediction.

At the system reliability level, opportunity areas are more explicitly bringing
in the human impact and the enviromment, that is, treating the reliability of man as
well as the machine and treating other unknowns such as possibly the enviromment as
a probabilistic variable. At the equipment level a need is how to formulate proba-
bilistic models for treating distinct fallure modes simultaneously with environment
(Part IV of this report presents some thoughts on this). At the systems level again,
there is a need for improved methods to tie together maintainability, spares, per-
formance, and cost with reliability. This has been labeled systems effectiveness, and
there are efforts under way here as noted in Sec. 2.2.

Also to be given due consideration is the opportunity for less complex methods,
that 1is, striving for balance between complexity of the prediction technique and
accuracy of the result. There are places for simple rules of thumb and for simple

estimating relationships.
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Part II. Single Item Reliability

In this part the concept of reliability measures for a single item are discussed
from a broad viewpoint. The reliability measures consider two basic categories of
problems: (1) those in which an item is in either a success or in a failed state
(considered in Sec. 4) and (2) those in which certain characteristics of an item
may be of an unacceptable value, the "bound-crossing' problem (considered in Sec. 5).
Guidance on obtaining numerical index values for a single item of both categories is
given in Sec. 6.

These reliability measures are potentially applicable to any item or event to
be considered in a prediction. Thus inputs for multi-item prediction equations would
be of one of the forms covered, as would the output of the prediction. Or, if the
reliability measures for an item is obtained from testing, then inferences would be
made concerning these measures.

These definitions will, in the main, be well-known to reliability workers.

Some features are covered, however, which are not emphasized in existing handbooks
and books. These are the following: Possible confusion concerning mathematical
descriptions of the widely cited bathtub curve when it is used for non-repairable
items such as parts versus for repairable items such as equipment is discussed in
Secs. 4.3 and 4.8. Uncertainty in the environment is discussed in Sec. 4.4.
Explicitly bringing time into consideration for bound-crossing problems is introduced
in Sec. 5.4, where possible failure criteria for non-monotonic drift requires

careful treatment.
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4. Reliability Measures

Various indices used for reliability measures are described in this section,
and there is a probing beyond conventional assumptions. The material gets progres-—
sively more involved, starting with simpler notions and models. The later part of

this section goes into considerations of reliability measures for repaired items.

4.1 Definitions of States and Reliabllity

The simplest way of classifying the state of an item is as two states,
success (8) and failure (F). Let P(S) be the probability of success and P(F) be the
probability of failure of the item subject to given conditions under which the

probability measures are to be defined. Then

R = P(S) = probability of success,
1 -R = P(F) = probability of failure, and clearly
P(S) + P(F) = 1.

This simple classification and the associated indices of reliability and unreliability
are based on several assumptions such as the following:

¢D)] a definition of failure exists,

(2) the probabilities of success (or failure) are conditional on a known
(deterministic environment, or on known characteristics of environment
described by probabilistic measures, and

(3) the classification is for a certain future time instant or time interval.

Much of the subsequent material in this section involves expanded treatment of these
assumptions. The assumptions should be kept in mind, but more important, they should
also be kept in perspective. Most definitions and mathematical models are based on
assumptions which are not fully met when associated with real world situations. The
delicate question is always one of the effects of violation or relaxation of the
assumptions for the problem which is at hand. Sometimes extremely simple equations
will do the job; at other times extremely complex equations are needed. In some
situations the state of an item should be subdivided into three states §, Fl’ and F2
for an adequate approximation to real world application. F, and F, are two different

1 2
failure modes and the probability identity can be written as

P(S) + P(Fl) + P(FZ) = 1.

Some examples for consideration of two failure modes are digital circuits, relays,
switches, and diodes. In general, any reasonable number of states may be assoclated
with the various modes which an item might assume. Some additional comments concerning

mathematical descriptions of multiple failure modes appear in Sec. 4.3.
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It is desired to broaden one's concept of failure to include the many possible
types which may occur. Some examples of failure modes are given below.
(1) The performance of an item deviates from its nominal value by more
than 10 percent.
(2) A diode opens or shorts.
(3) An amplifier is ''noisy'".
4) An accumulation of the effects of a somewhat periodic variation of the
performance of an item outside given bounds.-”
(5) Corrosion of a boiler tube.
(6) Fracture of a pressure vessel.
These various types of failure are introduced to motivate one to pay attention to

possible ways in which items can fail and hence not overlook any important details.

4.2 Reliability as Function of Time

The probability density function of time to failure of an item will be used as
the starting point, as this can be visualized easily from a histogram of time to
failure data. In Fig. 4-1 a histogram is shown as dashed and the associated
probability density 1s the continuous function.

(1) The probability density of failure as a function of time t is

p(t), t > 0. (4-1)
(2) The probability of failure of the item by time t is the cumulative
probability t

F(t) = gp(t)dt. (4-2)

(3) Reliability is the probability of no failure by time t

R(t) = 1 - F(t) = [p(t)dt. (4-3)
t
(4) The hazard rate is the conditional probability of failure given
that the item has not failed by time t. Other terms widely
used for hazard rate are failure rate (when exponential failure
density function applies), instantaneous failure rate, or force
of mortality.
The probability relationship concerning two dependent events can be used to develop

the hazard rate. Recall that*

P(A|B) = —ng(‘;‘})"’

*
Basic probability definitions and relationships are presented in Appendix A.4.
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If: P(AlB) = h(t)dt = probability that an item fails between t and t+dt, given
that it has not failed by t,
P(AB) = p(t)dt = probability that an item has not failed by t and that it
fails between t and t+dt, and
P(B) = R(t) = probability that an item has not failed by t.
Hence

P(AIB) - P(AB) _ p(t)dt

P(B) R(t) °
h(t)dt = Eé%%%i , or h(t) = %%f% . (4-4)

The hazard rate function h(t) can also be obtained using the fact that it is an

instantaneous failure rate.

lim F(t+At) - F(t) 1 _ p(t)
At+0 At R(t)  R(t)

h(t)

It can also be expressed as follows:

-R'(t) _ dla R(t)

h(t) R(t) = - dt s

where R'(t) is dR/dt. Reliability can now be expressed as

t
R(t) = exp{—fh(t)dt}.
0

(5) The mean time to failure, MTITF, is the expected time to failure.

The expected value of a random continuous variable x is

[x p(x)dx

-0

E(x)

or in the above notation

E(t) MITF = [t p(t)dt = [R(t)dt . (4-5)
0 0

The last result can be seen by integrating by parts the following

o0
Jt R'(t)dt, R'(t) = drR
dt
0
The definitions in Eqs. 4-1 through 4-5 were developed for time as a
continuous variable. In some situations it is appropriate to measure time as a

discrete variable, where the number of cycles or operations to failure is a discrete
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variable. The definitions in Eqs. 4-1 through 4-5 have direct counterparts for handling
discrete variables. These counterparts for the discrete variable case are shown below,

where n is the number of cycles to failure [Ref. 13].

Probability density: p(n), n =1, 2, 3, ... (4-6)
n
Probability of failure: F(n) = % p(n) -7
Reliability: R(n+l) = 1 - F(n) (4-8)
. - _p(n) -
Hazard rate: h(n) = Ta-D (4-9)
Mean cycles to failure: MCIF = ? n p(n). (4-10)

A large number of possible probability demsity functions (discrete and
continuous forms) have been proposed. Several are shown in Appendices A.l and A.2.
Although these density functions are presented with reference to lifetimes, there are
also other possible applications of these same density functions in reliability
analysis. Some of these density functions will again appear in subsequent sections
of this volume. See Ref. 14 for some good examples of application of various
density functions for reliability purposes.

The exponential density function is widely used in reliability prediction and
its key feature, a constant hazard rate, is illustrated below in Ex. 4-1. One of
the most common misconceptions appearing in the reliability literature is the
implication that a random failure law and the exponential failure law are one and
the same. Assuming a random failure law simply implies that failure times occur
randomly over time according to the stated probability distribution, there can be
any number of distributions or laws depending upon whether the log-normal, the
Weibull, the gamma or some other distribution is assumed to best describe the

distribution of failure times.

Example 4-1

A high-power magnetron has an exponential distribution of time to
failure with a failure rate of 2.5 x 1073 failures per hour. The probabil-
ity density function of Fig. 4-1 is of this item. (a) What is the relia-
bility for a new magnetron for the first 40 hours of operation? (b) What
is the reliability for the following 40 hours of operation if the
magnetron has not failed during the first 40 hours?
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Solution:

(a) The probability density function (pdf) of the exponential distribution is
p(t) = Ae_At.
Using Eq. 4-3, the reliability equation for the exponential distribution is
T A
R(t) = fre*fdar = e
t
For A = 2.5 x 1073, t = 40 hours the reliability is
- -3
R = e 2+0%1077x40 0.905.
(b) Rephrasing the second question, what is the probability that failure will not
occur in an interval At = t" - t', given that it has not failed up to time t'?

Using the probability that an item failed between t and t+dt if it has not failed
by t shown in development of the Eq. 4-3:

----- Histogram
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Figure 4-1 Exponential Probability Density

‘With A = 2.5 x 10~3 and a 400 Hour MTTF
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t"

Jp(t)dt
R
R = 1 D
- q - ReD - RGN R(')
R(t") R(t") °

In the example problem for the exponential distribution

-at" -2 (t'+AL)
e - e

-at! -at!

e e

-AAt
e

- -3
e 2.51107 x40 0.905.

Thus the same solution applies to questions (a) and (b). Let us now apply Eq. 4-4
for the hazard rate to the exponential distribution to assist in understanding this

result.

=it
e

- p(t) _ A
h(t) R(t) oAt

The hazard rate for the exponential distribution is constant. For the exponential
distribution the same reliability equation applies regardless of how much operating
time has been accumulated. Only the exponential distribution is like this, which
is one reason why it is widely used in reliability analysis.

4.3 Bathtub Curve

A form of the hazard rate which is widely cited in reliability literature is
the bathtub curve as shown in Fig. 4-2(a). A popular reasoning on how such a curve
would come about is as follows. The early decreasing hazard rate is thought of as
resulting from manufacturing defects, and early operation will remove these items
from a population of like items. The remaining items have a constant hazard rate
for some extended period of time where the failure cause is not readily apparent and
finally those items remaining reach a wear-out stage. There is a strong parallel
between the above curve and the instant mortality curve for human beings.

None of the commonly used reliability distributions such as those cited in
Sec. 4.2 and expanded on in Appendix A.l, e.g. log-normal or Weibull, individually
has a form which has this bathtub shaped hazard function. Thus if a mathematical
description of the bathtub curve is desired then it must be developed. One approach
would be to first select an appropriate probability density for each of the three
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periods of decreasing, constant, and increasing hazard rates as shown in Fig. 4-2(b).
These will respectively be pd(t), and pc(t), and pi(t)' These could each be for the
Weibull or gamma distribution with different shape and location parameters for each

of the three periods. The pc(t) for the constant hazard-rate will be the exponential
distribution, which is one case of both the Weibull and gamma. Further, there is a
probability that only one of the failure causes will occur for an item, where

P({d), P(c), and P(i) are respectively these probabilities for each of the three causes
and P(d) + P(c) + P(i) = 1. These probabilities for a single item will be the same

as the percentages for a large population of these failed items which would fail

from each of the causes. A probability density for an item such as that shown in

Fig. 4-2(b) could be developed from
p(t) = P(d) py(t) + P(c) p_(t) + P(1) py(B). (4-11)

where the terms are discussed above. The reliability function and hazard rate can
then be developed using Eq. 4-3 and 4-4.

Another approach to the development of a reliability function for the bathtub
shaped hazard curve is to treat the reliability of each of the causes as conditional

eventss. Here the probability that an item will not fail as a function of time is
R(t) = R(d;t) R(c;t|d) RG;t|d,0). (4-12)

where d is the event of no failure from the cause described with a decreasing hazard
rate and similarly for ¢ and 1i. Development of this function will lead to the same
results as development of Eq. 4-11.

There are two reasons for this discussion. One is that the development of
Eqs. 4-11 and 4-12 illustrates how the same item would be mathematically described
where time and multiple failure modes (or failure states of Sec. 4.1) are both
explicitly considered. This approach will be used later in Part IV where detailed
failure-modes are again treated. Another reason for development of mathematical
models which would have a bathtub shaped hazard function is to assist in the under-
standing of the implications of these curves.

The above discussion is for a bathtub shaped curve for an item or for a popula-
tion of identical items where a failed item is not repaired or replaced. The bath-
tub shaped curve is also used in association with the situation where an item is
repaifed or replaced, in particular for repairable equipment. When failed items are
repaired or replaced, then the mathematical development of the bathtub curve is
different than noted above. This use is discussed in Sec. 4.8 following the presenta-
tion of some groundwork in Secs. 4.5 through 4.7 concerning reliability measures of

repaired and replaced items.
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4.4 Consideration of the Environment

The reliability of an item is defined as the probability that an item performs
its intended function under defined conditions at a designated time for a specified
operating period. Thus the reliability is conditional on a specific enviromment or
environmental profile whether it is estimated by a simulated test or from results of
items used in previous missions, The environment might be characterized by fixed )
conditions, such as temperature equal to 30°C, or it may be described by a deterministic

profile, such as that shown in Fig. 4-3.

(°c)

Temperature

Time

Figure 4-3 Example of Deterministic Environmental Profile

The environment might also be characterized by a random variable or a random
process where time is explicitly considered. Some approaches to considering the
effect of random environments on reliability measures are discussed below.

If the environmental stress is described by its density function p(E), then
the probability of successful operation is given by the following procedure. Let
the conditional probability of success given E be denoted by

P(S|E),

then the unconditional probability of success for continuous density function, p(E),
is given by

P(S) = [P(S|E) p(E)dE (4-14)
E
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and for discrete density function, P(Ei)’ i=1,2, ..., by

P(S) = L [P(S|E)) P(ED]. (4-15)
i
Example 4-2

Consider the simple example in which the probability density
for the environment is discrete as given below.

1
Z—for El
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and let the probability of success conditional on these environments be

P(S|E))
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Then the unconditional probability of failure is
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The above concept also can be used when an event requires an elapsed time period
(such as S = no failure to time t) and also when the environments are time
dependent .

In some situations it is necessary to explicitly consider the environment as
a random process with known characteristics. Consider the problem where an item
will sometimes fail when an environment which is a random process reaches a certain
level. If the environment is a random process with peaks the distance between which
is given by the negative exponential distribution (assuming they occur with rate A
pér unit time period) and if the conditional probability of failure is p given that
a peak has occurred, the probability that the item does not fail in the interval

(0, t) is given by
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P(S)

il

P(no peaks in (0, t)) + P(1l peak in (0, t))gq

+ P(2 peaks in (0, t)) q2 + .

=it -At
Y LN (At) e q+ (Aat) e 2

11 21 !

+ ...

e_th.

Thus the failure time distribution is exponential under this enviromment. See
Refs. 15 and 16 for further discussion on this and related descriptions of a random

environment. Further, if an item will fail only after k peaks or shocks have occurred,

the gamma density function is appropriate. That is

o Ak tk—l e—kt

p () = O, elsewhere, (4-16)

where

t is time,
A is the rate at which the shocks occur,

k is the number of shocks for failure, and
(k) = (k-1)! = (k-1)(k~-2) **° 1.

In summary, the nature of the environment must be considered carefully to

hypothesize models for behavior of the reliability function.

4.5 Poisson Processes

The Poisson process is widely assumed in reliability prediction, particularly

for repairable items such as the typical electronic equipment.

Let Pn(t) = probability that exactly n occurrences are recorded during a
time interval of length t.

Thus Po(t) = probability of no occurrences, and

1- Po(t) = the probability of one or more occurrences.

It is assumed that
1—P0(t)
lim ——— -+ A, that is the probability of one
t
t>0
or more occurrences is proportional to the length of the interval, A is a positive
constant, the failure rate of an item. See Ref. 17 for a detailed development of

this process and related birth and death processes.
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Postulates: Whatever the number of occurrences in the interval (0, t), the following

conditional probabilities hold
P(an occurrence in the interval (t, t+h)) = Ah+o(h),*
P(more than one occurrence in (t, t+h)) = o(h).
_The above postulates yield the following difference equations.
Pn(t+h) = P_(£)(1-2h) + P _1(&)Ah + 0Ch), n>1 (4-17)

i.e., the probability that there are n occurrences in the interval (0,t+h) is the
probability of n occurrences in the interval (0,t) multiplied by the probability

of no occurrences in the interval (t,t+h), plus the probability of n-1 occurrences

in the interval (0,t) and one occurrence in the interval (t,t+h), plus the probability
of n-x (x > 2) occurrences in (0,t) and x(> 2) in the interval (t,t+h), (the latter

is of order o(h)). For n =0

Po(t+h) Po(t)(l—xh)

or

PO(t+h) - Po(t)
h

—APO(t),

and as h » 0 one obtains

P, (t)
—g— = “MB(t) or BPa(r) = AP (t).

Using PO(O) = 1 we get Po(t) = e_Xt. Equation 4-17 similarly can be reduced to

the differential equation
' - _ -
P (1) = AP_(t) + AP, (t), n > 1. (4~-18)
Substituting into Eq. 4-18, we obtain
At

Pl(t) = Ate .

We derive successively all the terms to obtain the general terms

-At n
. e Ot - o -
Pn(t) = 1 ,n=0,1, 2, ..., ™. (4-19)

*®
o(h) is a function of h such that lim_(o(h)) = o.



This formula gives the probability that n occurrences will be observed in a time
interval (0,t) with a constant rate of occurrence per unit time equal to A. The
quantity At 1s the expected number of occurrences in the time interval of length t
and one frequently sees the form

-u n

P (t) = £ B (4-20)

n! ’
where u is the expected number of occurrences in the time interval of length t.

Example 4-3

Suppose that an item has a failure rate, i, of 0.001/hour. What
is the probability that no failures occur in 100 hours?

Solution:

At

]
o
o
(=]

~
(=]
o
=
~

n
[=]
=

Thus
P(0 failures)

]
[
(]
14

Note that this is equivalent to the reliability of the item. Hence one can better
understand the tie-in between the Poisson distribution and the exponential distribution.

Example 4-4
Suppose that a certain item is tested as follows. One item is
placed on test until failure and it is then replaced by another identical
item, etc. Suppose further that the failure rate of the item is 0.001/
hour and that the test is for 10,000 hours. What is the probability of
at least 15 failures?
Solution:
At is equal to 0.001 (10%) = 10, the expected number of failures in 10* hours.
Thus the probability of at least 15 failures is given by
-At n -10 . .n
_ = e At . = e 100
P(n > 15) = n£15 n! = n£ = 0,083
using Molina's Tables [Ref. 18 ] for the Poisson distribution. The same solution
would apply to the above problem if a single item was repaired and returncd to
operation. Here the operating times between failure would be exponentially dis-
tributed, and the equipment reliability index, Mean Time Between Failure (MTBF), is
the mean of this distribution. Only the operating time would be considered. Further,
the same solution would apply to any number of identical items operated for a total

time of 10,000 hours, regardless of how much time was accumulated on any item.



A reason why the Poisson process i1s widely assumed in reliability prediction
is that in this mathematical model past operation has no influence on future relia-
bility. This simplifies a prediction analysis; for some complex systems it makes
the prediction practical.

4.6 Reliability Measures for Repaired Items

Reliability descriptions for repairable items are discussed here for a
'general situation where an example of such an item would be a motor or typical
electronic equipment. With repair, there are time (of operation) to first failure,
time between first and second failure, time between second and third failure, and
so on. Each of these failure times when considered for a large number of identical
items will have a distribution associated with it; these distributions may or may not
be identical.

The data from motor failures [Ref. 19] have indicated time between failure
patterns as in Fig. 4~4, Density functions of the time to first failure, time
between first and second failure, time between second and third failure, and so on
are shown in Fig. 4-4, and these could be fitted with Weibull distributions with
different shape and scale parameters. The origin of each density function is when
operation is resumed after the motor is repaired. When the density functions are
plotted on an elapsed operating time scale, starting with the earliest initial
operation, then only the time to first failure density function is as shown in
Fig. 4-4 and the others have a different shape. This is illustrated in Fig. 4-5.

The density function of the time to second failure on the scale in Fig. 4-5 is the
sum of the time to first and time between first and second failure; the time to

third failure is the sum of the first, second and third, and so on. There is
considerable overlap on the time scale of Fig. 4-5; as an example the early overlap
of the first and second times comes about because some of the first failures occur
late, which are repaired, and the second failure occurs shortly. The overlap
reflects the many possible combinations by which the first and second failures can
occur. As the third, fourth, and additional failures are brought into consideration,
they enter into the overlap on the elapsed operating time scale in a similar manner.
The summing operation 1s referred to as convolution. Fig. 4~5 also illustrates the
renewal rate, which represents the total number of items failing per unit of time,
divided by the original population. It can be seen to be the sums of the ordinates
of all the density functions of the time to failure as a continuous function of time.
Note that this is a conventional deterministic, algebraic summing, and is thus dif-
ferent from the probabilistic convolution type summing noted above. The renewal

rate where an item is repaired is similar in one sense to the density function of the

non-repairable item, as their shapes are what the smoothed curves for histograms

31



p(t)

Figure 4-4 Time Between Failures With Different Density Functions

r(t) S
r(t) =1 2 3 4 5
and -
ui(t)
“1(t)
0 t

Figure 4-5 Renewal Rate Associated With Fig. 4-4
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of populations of items would look like. However, they are different in the sense
of predicting the reliability for a single item. 1If for a repairable item the
accumulated operating time since the last failure, and the shape of the demsity
function of the pending failure is known, then a reliability prediction equation
would be based on Eq. 4-4. If this information is not known then how a reliability
prediction would be made would depend on just how much is known concerning accumulated
operating time, accumulated failures, and the time of last failure.

The mathematical description of the renewal rate is sketched below. Extensive

treatment of it can be found in Ref. 20.

u, (8) = p,(t)
t
u,(t) = éul(tl) p, (-t )de,
t
u (0 = éui—l(ti—l) py(e=ty dt
t
u (£) = éun—l(tn—l) p (t-t__)de . . (4-21)
The renewal rate is their sum:
(t) = .3 w.(t) 4-22
r = & u:,L ti . (4-22)
Here
pi(t) = the density function of the time between the
(i-1)th and ith failure where elapsed time
only includes that of the ith failure.
ui(t) = the density function of the time to the ith
failure, where elapsed time includes that
of previous failures.
r(t) = the renewal rate where elapsed time is

continuous.

The renewal rate has not received much explicit application to conventional relia-
bility predictions, as conventional predictions typically assume that time between

all failures during the period of interest have an exponential distribution and
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thus are a Poisson process as discussed in Sec. 4.5. The Poisson process.was

developed in Sec. 4.5 using difference equations, but it could also be developed

using the renewal rate as the basis. However, for various mixtures of non-exponential
distributions where the difference equation approach is not applicable, the renewal

rate offers an approach for developing appropriate mathematical models. The discus-
sion of renewal rates is included here to give those interested in using non-exponential
distributions for repairable items an indication of how to get started and also to
support the later discussion in Sec. 4.8 concerned with the use of bathtub shaped

curves for repairable items.

4.7 Reliability Measures for Replaced Items

A somewhat similar situation to the repairable item exists where identical,
non-repairable items are used in large quantities and are replaced with new items
when a failure occurs. Examples of this are light bulbs of fluorescent tubes in
large buildings. Here the mathematical description of the density funotions of the
time to first failure, time between second andd third failure, and so on are identical.

The renewal rate of Sec. 4.6 becomes the replacement rate, where the later has
the feature that all densities of time between failure are identical. Where this
feature exists, then r (t) of Eq. 4-22 and Fig. 4-5 becomes constant and equal to the
reciprocal of the mean lifetime after several generations [Ref. 20]. This is a
classical problem in renewal theory, but has limited applicability for real world
reliability analysis problems.

4.8 Bathtub Curve for Repaired Items

The familiar bathtub shaped curve, which has previously been discussed in
Sec. 4.3 for a single lifetime hazard rate where there was no repair or replacement,
is also used on occasion for repairable equipment. Typically there is no discussion
of the appropriate mathematical development [Ref. 21 , p. 24]. Such a bathtub
shaped curve for the repaired item, however, implies a different mathematical model
than for the non-repairable item. (The repairable equipment is confused with the
non-repairable part on page 19 of Ref. 22 ,) A mathematical model which would lead to
a bathtub shaped curve for repaired items could result from application of the renewal
rate of Sec. 4.6, which is quite different from that of Sec. 4.3 based on the hazard
rate.

In Fig. 4-6 some time between failure density functions are shown for the time
to the first, time between first and second, and so on. Figure 4-7 shows
the renewal rate as well as the elapsed operating times to the first, first plus
second, first plus second plus third, and so on. Figures 4-6 and 4-7 do
not come directly from data, but are a judgement assumption which is believed to be

somewhat similar to that which would be found for some electronic equipment.
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Each of the time between failure density functions of Fig. 4-6 is assumed to be
exponential in shape, but with some differences in the mean time to failure parameters,
The first two density functions have successively increasing means, the third density
function on through a very large number, n, have the same mean, and the nt+lst and
“successive density functions have decreasing means. Combining these time between
failure density functions into a renewal rate is illustrated in Fig. 4-6, which has
-the familiar bathtub shape.

1 p(t))
1 a
2 b
p(ti) 3 through n c
n+l b
n+2 a

Figure 4-6 Exponential Time Between Failure Densities with Different Means
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Figure 4-7 The Bathtub-shaped Renewal-rate Curve
for Repaired Items of Fig. 4-6

The flat portion of the renewal rate of Fig. 4-6 is the situation often assumed
in reliability prediction. Here the accumulated operating time does not affect the

reliability of an equipment, and the reliability model of

R(t) = e ¥

applies regardless of age. This period is also described by the Poisson process
discussed in Sec. 4.5. Exponential distributions with identical A will always result
in a constant renewal rate. On the other hand, a constant renewal rate does not mean
that the times between successive failures have an exponential distribution and that
a Poisson process exists. Recall that Sec. 4.7 noted that a constant renewal rate
will ultimately result from any stable distribution of time between failures.

One reason for going into this discussion of the widely cited bathtub curve
is to point out that a bathtub curve could arise from other than identical exponen-
tial distributions. As reliability analysis matures and is extended to a wider
diversity of commodities it will be increasingly necessary to be aware of the

possibility that non-exponential distributions might exist. For instance, data from
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a population of repaired equipment when plotted in histogram fashion might resemble
the bathtub curve, but the distribution of time between failures need not be
exponential. Correct choice of underlying distributions can have high implications
for the accuracy of reliability predictions, for the validity of statistical tests,
and for the optimization of preventive maintenance actions based on assumed

distributions.
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5. Bound-Crossing

The type of reliability measures treated in this section are those sometimes
labeled tolerance, drift or degradation, better described as a 'bound-crossing" type.
Items are designed to meet given requirements such as the output voltage of an
electronic power supply shall be 115 # 1 volt ac and it is designated as failed if
the voltage crosses one of the bounds 114 and 116 volts ac. In a mechanical system
it may be desired to estimate the probability that the strength of an item will
exceed the stress to which it is subjected. In some environments the strength of an
item will be a function of time as a result of fatigue due to thermal cycling or
stress cycling. In this case we will be interested in the probability that at the
mission end the item will have sufficient strength to meet the applied stress. The
bound in this case is not necessarily a fixed level but may be a distribution of

stress levels.
5.1 Fundamentals

5.1.1 Notation
The notation to be used in this section will be y for a performance charac-
teristic, s for stress level or environment level, and t for time. The bound will be

denoted by £ for lower and u for upper.

5.1.2 Bound-Crossing Reliability
The probability that a performance characteristic y does not exceed the upper
bound u is denoted by

Pu = P(y < uw),

and the probability that u is exceeded by y is

1- Pu = P(y > uw.

Similarly, P, is the probability that y is less than the lower bound £, i.e.
Pp = P(y < £). 1If the bound has a distribution of values such as the probability
density p(s) for stresses, then the probability that y-s exceeds O,

R = P(y-s > 0)

is a measure or index of the performance of the item. To consider more than one
performance characteristic and stress, vector notation can be replaced for the single
values y and s respectively, with due consideration for probabilistic dependence. To
consider time the appropriate distributions become time varying, and additional criteria

of failure become possible; this will be discussed in Sec. 5.4.
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5.1.3 Distribution Types

In order to estimate the probabilitges Pu and P£ it is necessary to know the
distributions of the performance characteristics and stress levels. These distri-
butions may be any one of several common distribution forms given in Appenddix A.1l,
e.g. normal, log-normal, uniform, gamma, etc. The selection of the distribution
form can sometimes be made on the basis of technical considerations such as positive
and negative deviations of the same magnitude are equally likely (normal), or that
the incremental changes are proportional to the measurement value (log-normal).
Refer to Ref. 15 for basic assumptions underlying some distribution forms. Often
the distributions are selected on a subjective basis to describe one's feeling about
the variation of the characteristics and perhaps more often they are chosen for
conveniénce of the analytical methods. The latter is often not necessary due to the
capabilities of modern electronic cémputers and the availability of '"canned" computer
programs to perform the necessary analyses as described in Volume II - Computation.
Time varying distributions for bound-crossing problems introduce additional considera-

tions which will be covered in Sec. 5.4.

5.2 Fixed Bounds

In this situation it is assumed that a distribution form can be selected which
describes the variation in the performance attribute at some specified time in its
life when used under certain environmental conditions. The distribution can some-
times be selected by basic considerations of the physical process, by fitting a few
distributions by graphical techniques, or by using more sophisticated statistical
techniques for estimating the distribution parameters. In some cases the form of
the distribution may not be specified and a distribution free or non-parametric
method used. The bounds are assumed to be known from technical considerations of the

application of the item in the system.

Example 5-1

A performance attribute of interest at the end of 10,000 hours
under specified environmental conditions is normally distributed with
mean 95 and standard deviation 10 units. For example, this might
apply to h ed an equivalent circuit h-parameter for a transistor. If
it is desiréd that hg, exceed 70, then what is the probability that a
transistor selected at random from a population of similar items and
subjected to 10,000 hours of operation under the same conditions will
have an hfe greater than 707
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P(h, < 70)

fe

-
2
-

75 85 95 105 115 fe

Figure 5-1 Probability Density Function for hfe

The probability that hfe exceeds 70 is

P(h, > 70)

L]

fe 1- P(hfe < 70)

l_q,(Z_Q_%.E)

70 - 95 )
10

1 -9

where u mean of hfe = 95,

c standard deviation of hfe = 10,

and ¢(X) is the area udder the standard normal distribution curve to the left of X.
In this example X is -2.5 and the area to the left of -2.5 can be obtained from a

table of areas under a normal curve such as given in standard probability and statis-

tics books,

®(-2.5) = 0.0062.
Thus the probability that hfe exceeds 70 is
P(hfe >70) = 1-0.0062 = 0.9938.

Figure 5-1 illustrates this example.
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The assumptions under which the above result was obtained are given below and should
be carefully noted when using these techniques:

(1) Normal distribution of values of hfe’

(2) Known mean and standard deviation, and

(3) Conditions of manufacture and operation of items are same as

those to which the probability estimate 1is to apply.

Checking the first and second assumption would depend on the source of the informa-
- tion for the hfe distribution. Often this will come from special tests for this
purpose. If so, the first assumption above can be checked graphically by plotting
the sample distribution function on normal probability paper. The extent to which
one can check the adequacy of the normality in the region of the tails depends upon
the amount of data. The second assumption is really never satisfied but for very
large sample sizes the results would be practically unaltered by using procedures
which depend on the sample mean x and standard deviation s. The third assumption is
of special importance to the design engineer in that he will specify the test condi-
tions to correspond as nearly as possible to those conditions under which he wishes
to infer the quality concerning the items tested.

Similar results can be obtained using other forms of distributions such as
log-normal, Weibull, extreme-value, etc. In each case the '"goodness" of the distri-

bution can be checked by a probability graph of appropriate form and/or by analytical

techniques such as given in statistical texts, e.g. see Ref. 23.

5.3 Stress~-Strength Model (Bound Distribution)

In this case the performance of an item is considered to be satisfactory if the
strength of the item exceeds the stress to which it is to be exposed in application.
Thus the bounds may not be fixed in that an item selected at random and used in a
specific system may be subjected to one of a distribution of stresses rather than
a known fixed stress. In actual practice the stress may vary over the life of the
item but consider for the moment that an item is subjected to a constant stress over
its life and that the stress level may vary from item to item.

The approach to this problem is to specify the stress and the strength density
functions by one of the methods of Appendix A.l. Then the parameters of the distri-
butions are estimated and one then computes the estimate of the desired probability.
Thus in the notation suggested earlier, the strength density function is p(y) and
the stress by p(s). Then it is desired to determine the probability that y is larger

than s.
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B(y > s)
or the equivalent

P(y - s > 0).
This is found by

P(y >s) = [p(s) [[p(y)dylds (5-1)
0 8

where the range of s and of y does not contain negative values and the distributions
are independent. An example is given below in which both distributions are assumed
to be independent and normal. In this case the difference y-s is also normally
distributed and the parameters for this distribution of y-s are given in terms of

those for the individual distributions of y and s respectively.

Example 5-2

Consider a simple stress—-strength analysis of a part with strength
density function assumed to be normal with mean (u) 25K psi and standard
deviation (o) 3K psi and stress distribution with mean 15K psi and stand-
ard deviation 2K psi. The two density functions are illustrated in Fig. 5-2.

Stress pdf Strength pdf

» K psi

Figure 5-2 Probability Density Functions for Stress and Strength
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The probability that the strength exceeds the stress is given by the probability,
P(y -8 > 0)9

where y is the strength and s is the stress. Now y-s is also normally distributed

with mean 10K and standard deviation

a(y-s) = Vo4(y) + a%(s)
=Kv9+4 =  3,6K psi.
and hence
-s - (10K -10K -1
P(y—s>0)=P(XS361§ l>361<)=P(“>%)

where # 1s a standard normal variable and thus
P(y -s>0) = 1-¢(-2.78) = 0.9973.

One of the major difficulties in stress-strength problems is obtaining suf-
ficiently good estimates of the stress and strength distributions and hence the
difference y-s. Given these estimates the problem of estimating the probability is
a difficult one even if one assumes a normal distribution. Often the difficulty is
aided by using the estimated safety margin as a measure or index of adequate

strength-stress margin. The safety margin is

wo-u
Safety Margin = Y - . (5-2)

Yol(y) + o4(s)

*
5.4 Time Dependency

The random behavior over time of a performance attribute can be visualized as
a time-varying probability density functionm as illustrated in Fig. 5-3. Such sketches
are sometimes used for data for a part characteristic obtained from life testing.
Where the criterion of failure is that the performance attribute y(t) go outside some
fixed bound, then the reliability measure is a straightforward extension of the approach
in ‘Sec. 5.2 if the performance attribute drift is always @ither increasing or decreasing
(monotonic) such as shown in Fig. 5.4.

Here the reliability is

R(t) = Pmb[yz < y(t) < Yu]

*
Lower case letters are used in this report for random processes and variables.
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plyity) p(y;it)) p(yit,)

Figure 5-3 Drift of y(t) Illustrated as a
Time-varying Density Function

Failure

Figure 5-4 Examples of Monotonic Drift Behavior
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which is also

Yu

R(t) = [ ply; t)dy

o
where the integration is over y at time t and R(t) is a monotonically decreasing
function. An approximation to R(t) by performing this integration on the p(y; t)
.at selected times t will often suffice. It is stressed that this approach is for a
monotonic drift. Non-monotonic drift such as shown in Fig. 5-5 introduces additional
considerations.

For non-monotonic drift first consider the failure criterion treated above where
failure is defined as the performance attribute going outside some fixed bound. If
all that 1s known is some p(y; t), then the drift reliability cannot be obtained.

For instance, the p(y; t) at time tl and at some later time t2 might be identical,
but this does not mean that no additional failures have occurred because 1n a
population of items some which were out of bound may have drifted back in and others
may have drifted out., Therefore it is necessary to describe the time-varying
distributions of the performance attributes with a functional form. Here the
performance attribute is expressed as a deterministic function y(t) = y(a; t) where
the g are probabilistic with known probability demnsity p(a). This method can be

used where the drift failure criterion is a first crossing of a bound for either
monotonic or non-monotonic drift such as in the above discussions, and it also ban be
used for other criteria for non-monotonic drift such as the following:

(1) the cumulated area outside a bound(s),

(2) the number of crossings of a bound(s),

(3) the cumulated time outside a bound(s).

The approach for non-monotonic drift is to reduce the failure criterion to a first

crossing problem. A new function w(t) is defined such that reliability becomes
R(t) = P(yz < w(t) < yu).

As an example, Fig. 5-5 illustrates the last failure criterion of the amount of time
that y\t) 1s outside the bounds. Here a corresponding function w(t) is defined, and
the failure criterion becomes w(t) first crossing a specified level V. Other w(t)
functions could be established for other failure criteria.

An example of a possible mathematical form for describing the performance
attribute is the polynomial expression y(t) = bO + bl t+ ...+ bntn where the b's
are random variables of the same sign for monotonic drift and of mixed signs for
non-monotonic drift. Trigonometric series offer forms for periodically varying

attributes.
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a) Attribute Behavior

y(t)

b) Special Function for Defining Failure
w(t) = time that Y > y(t) > yu

w(t) ‘///’,/

] e — — e . ——— - — ——

ailure for w(t) > v,

Figure 5-5 Example of Non-monotonic Drift Behavior and One

Possible Method for Defining Failure
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In some situations where the drift of the performance attribute is non-
monotonic it may be represented by a stochastic process. Such a situation could be
the error in a system output. For example, a stationary Markov Gaussian noise
process may be completely described by its auto-correlation function or its power
spectral density. An experimental application has been made using this general
approach for the error in a tilt stabilization assembly for an airborne radar antenna
[Ref. 24]. A recent theoretical book [Ref. 25] discusses various reliability

~indices for stochastic processes.

The discussion in this section is about fixed-bounds. The reader who is
interested in time-dependent problems where the bound is a distribution (such as
in Sec. 5.3 for the stress-strength problem) would find some guidance in the
discussion of Part IV. The basic idea would be to treat both the performance
attribute and the bound as independent variables in a deterministic function. The
dependent variable then becomes a single performance attribute which has a fixed
bound for the failure criterion. For example, let w(t) = y(t) - s(t) where y is
the strength, s is the stress, and w is the new performance attribute which has
the bound w(t) > O.

Two examples follow where the performance attribute is a time-varying normal
distribution. In these examples the performance attributes are of the form

y(t) = y(a; t) where the a are normally distributed.

Example 5-3

Suppose that the resistance of a particular electrical resistor
changes over the interval 0 < t < T according to

r(t) = @y + a,t ohms
where
ay is normal with mean 3302 and standard deviation 334,
o, is normal with mean -0.0030/hour and standard deviation

0.00192/hour.
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Let r(t), the resistance at time t be the performance measure of interest
and hence r(t) is also normally distributed with mean and standard devia-
tion,

pl{r(e)} = £330 - 0.003t)Q
1/2
ofr(t)} = {(33)2 + t2(.001)2} Q.
= {1089 + 1 x 10-6t2}1/2n.

For t = 1000 hrs.,

u{r(1000)} 3270

1090y /2 = 33q.

o{r(1000)}

and the density function of resistances at 1000 hrs. is shown
in Fig. 5-6.

261 284 327 360 393

Resistance (R)Q

Figure 5-6 Probability Density Function of Resistance at t = 1000 Hours.

If the reliability were defined as the probability that the resistance
lies between 270 and 390, then it would be given by the following, at

t = 1000 hours,
® 390-327\ _ ® 270-327
33 33

2(1.91) - ¢(~1.72) = 0.97 - 0.04 = 0.93,

w
[

where $(x) is the cumulative standard normal distribution function
obtained from standard texts.
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Example 5-4

Suppose that a mechanical part under consideration has a strength
which decreases with time in accordance with some function of time under
stress. Let the strength be described by

-kt -kt
y(t) = ae + az(l—e )

where a, is the initial strength, a, the strength as t+~, k is a
constan% determined by the particular part. Let also

a, be normally distributed with mean 50K psi and
standard deviation 4K psi,

a, be normally distributed with mean 20K psi,
standard deviation 2K psi and assume that
it is correlated with y(0), i.e. p = 0.90,
and

k = 0.001.

Thus y(t) is also normally distributed with mean

Wy ()} = 50k e 200t 4 ogr(1-e7- 0008y 04,
and standard deviation
oly(t)} = (422 e—0.002t + (l_e—.001t)2 22K2
+2(0.90) e 0-001t 4y . g (1-670-0018y41/2 4
= K{5.6e_0'002t + 6.47°001t 4}1/2psi.

For t = 1000 cycles, u{y(t)} = 31,000 and o{y(t)} = 2670. If the
prescribed lower limit were y, = 30K psi, what is the maximum number
of cycles to which the part shiould be exposed in order that the
probability of its strength exceeding 30,000 psi will be 0.95?

To solve this problem we must find t such that

ply(e)} - 1.645 - o{y(t)} = 30,000

-0.001t -.001t 0.002t -0.001t 1/2
e e +

50K + 20K(l-e ) - 1.645K [5.6e + 6.4 4]

- 30K = 0.
By graphing the left member of the above equation one can estimate

the time t at which the curve crosses the axis and hence obtain a
more exact solution analytically if desired.
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Figure 5-7 Strength Versus Elapsed Time
The number of cycles is estimated to be 700. It should be emphasized

that in this example the initial strength and final strength were
assumed to be highly correlated and that was considered in the analysis.
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6.0 Numerical Index Values

Guidance is given in this section for obtaining numerical values to be used
for the various single item reliability indexes which were introduced in Secs. 4 and 5.
Numerical index values (or data as they are sometimes referred to) result from actual
measurements, either from operational use or from testing. Reliability index measure-
ment is at best difficult. Most attempts at it suffer from lack of precision in the
failure criteria, in recording the operating conditions, and in knowledge of the
history of use of the item. It is desirable to keep in mind such loose conditions
-under which the data for most reliability indexes was obtained so as not to exaggerate

their accuracy.

6.1 Comprehensive Guide

A recent Navy-sponsored effort to identify reliability data sources gives
elaboration on sources of reliability data and specific information regarding where
to direct inquiries [Ref. 26]. This is a comprehensive guide and identifies many
sources for direct reliability indexes as well as for supporting reliability data.

6.2 Reliability Measure Sources

Index values for failure rates and other reliability measures as were identified
in Sec. 4 are treated here. Almost universally these data are for an assumed constant
falilure rate for nonrepairable items and for an assumed mean-time-between-failure of
the Poisson process for repairable items.

MIL HDBK 217A. This is a widely used and generally available source. Typically
the failure rate of the nonrepairable item is for an electronic part and is shown
graphically as a function of several stresses, with additional multipliers to be used
for different classes of operational use. The latest revision of this is dated
December 1, 1965, and is revision A [Ref. 27]; however, as of this date another
revision is in process.

MTBF Estimating Relationships. Simple MIBF estimating relationships have been

developed for electronic equipment and are quite useful for preliminary predictions.
Here the independent variables may simply be the number of active elements and the
usage class of the equipment [Refs. 2 and 27].

FARADA. The focal point of reliability data is the Failure Rate Data (FARADA)
program which is sponsored by the Tri-service and NASA in cooperation with qualified
government contractors. This program is currently conducted by the Naval Fleet
Missile Systems Analysis and Evaluation Group (FMSAEG) at Coronado, California
[Ref. 28]. Data inputs from hundreds of sources are collected, compiled and distri-

buted. The primary distribution is in the form of a series of handbooks.
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Reliability Analysis Central. The Air Force Rome Air Development Center is

currently developing a Reliability Analysis Central which is planned to become fully
operational by mid 1969 [Ref. 29]. The Central is to serve as the Air Force focal
point for reliability data.

Non-electronic Data. The data sources noted to this point in Sec. 6.2 are

primarily electronic in nature. Generally there is more electronic data than for
other commodities and failure causes. Some compilation of non-electronic reliability
data are Refs. 30 and 31 sponsored respectively by the Navy and Air Force. The

Air Force-sponsored work is still in progress.

6.3 Bound-Crossing Data

Distribution information to be used with the bound-crossing type of reliability
measure of Sec. 5 is commented on below. The degradation type of failure mode is
often not explicitly conmsidered in reliability predictions for electronic items, and
there are few established data sources for this failure mode. The FARADA program
and the developing RADC Reliability Analysis Central include degradation and drift
data under their scope of activity, though not much data are yet included. Equipment
and system producers who perform degradation studies have, of course, compiled some
numerical information. Sometimes this is made publicly available to others [Ref. 32].
Non-electronic reliability predictions of the bound-crossing variety are principally
the stress-strength problem. An Air Force-sponsored compilation of appropriate data
for such predictions has been recently published [Ref. 33]. The data here are

primarily for distributions of fatigue strength of various mechanical material.

6.4 Remarks

An undesirable feature of currently available data is that too often it is a
matter of collecting and passing on what has been reported without very much analysis.
One reason for this is that the inputs coming into these collection points are often
lacking in supporting information so that analysis is not possible. As the previously
mentioned FARADA program continues to progress and as the Reliability Analysis Central
becomes established, it can be expected that there will be more screening and analysis
on what is ultimately made generally available. An example of the type of data col-
lecting and analysis which is desirable was recently performed for NASA and was
concerned with historical reliability data from inflight spacecraft [Ref. 34].

Many equipment suppliers are currently collecting and analyzing reliability
data on equipment which they have produced. This sort of data collection effort is
extremely desirable and is to be encouraged. If the samples from which such data are
drawn are of sufficient quantity, the opportunity exists for developing data that can

be drawn on by the equipment suppliers to give more precise results.
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The person who is interested in reliability data should keep his eye open in
the general literature. Occasionally a paper or report will contain preliminary data
of the sort which is not in the established data sources. As an example, consider
the human failure mode. A recent paper remarked that a certain percentage of actual
failures were found to be caused by human error [Ref. 35]. Certain reliability pre-
dictions would be better off to include such failure modes with best available index

values rather than to omit them.
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Part III: Multi-Item Problems

Various approaches for developing reliability prediction equations for system
reliability as functions of item reliabilities and other variables are presented.
These are the conventional and classical ones which are suitable for practical
applications. Inputs to these equations are the single item reliability definitions
from Part I.

Section 7 covers logic models, time is explicitly brought into consideration
in Sec. 8, and Sec. 9 covers the influence of environments which are known probabilis-
tically and bound~crossing problems. This material will, to varying extents, be '
old-hat to experienced reliability analysts. However, some of it is not stressed
in existing reliability analysis handbooks or books; including the following: In
Sec. 7 are the use of cuts and paths for developing prediction models for complex
configurations and the problem of models for multi-phase missions. In Sec. 8 the
extreme value approach is discussed in a general manner and a general reliability
prediction model is derived (first known publication). In Sec. 9 are discussions
of the influence of enviromment which is known probabilistically and a specific
application of this to the multi-item stress-—-strength problem.

Reliability prediction equations have the apparent use of providing a numerical
reliability prediction index for a proposed system configuration. Although the details
contained in this report explicitly cover only this use, it is well to be aware of
other applications. These include: Using the model for sensitivity studies in order
to study the results of changes in input parameters by either 1limit or probabilistic
approaches. An approach could involve application of the method of moments such as
cited in Sec. 9.3.1 for a different problem. Another use is to provide part of the
equations needed for the application of literal optimization approaches to reliability
allocation problems. This use prompted the derivation of the general redundancy model
of Sec. 8.4. Yet another use is that certain practical engineering guidelines can be
gleaned from studying the models. An instance of this is the outline at the end of
Sec. 9.2 for multi-item stress-strength problems.

It should also be noted that the discussions of Secs. 7, 8, and 9 are oriented
mainly toward bringing items together into a system. These modeling concepts are,
of course, the same ones which would be utilized for bringing detailed failure-modes
together, where an item might have multiple failure modes such as were acknowledged
in Secs. 4.1 and 4.3. Some treatment of modes will be given in Sec. 7.6 on N-state
logic models and in Sec. 9.1 on the general question of the influence of enviromment.

Part IV will pursue detailed consideration of failure modes.
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7. Logic Models

The purpose of this section is to develop prediction models for multi-item
systems using logic modeling approaches. The system being modeled could be a
completely general one. Conventionally the system model includes only hardware,
but the model could be extended to include human operators, environments, signals,
loads, or other factors which may affect the achievement of system success.

_ Although the techniques given are applicable to large complex systems as well as to
lower level equipments, the discussion will be about systems containing only a
limited number of items so that it can be followed readily.

Probability of item success or failure for the logic based system models would
come from the appropriate measure of Part II. However, attention must be given to
probabilistic independence assumptions. The approaches in Sec. 7 are for the
situation where operating conditions (or environments) are assumed to be known, or
if they are unknown, item reliabilities are independent of this uncertainty. There
still could be dependence among the probability of success for items at fixed
operating conditions, and if it exists then it must be reflected in the logic models.

The reliability logic diagram such as shown in Fig. 7-1 and throughout Sec. 7
is a useful starting place for the discussion. In the reliability block diagram
each block is a two-state item (non~failed or failed). The manner in which the
blocks are connected describes the non-failed system in terms of the items comprising
the system.

Organization of this section is to introduce first the basic set operations
in Sec. 7.1 and then to apply them to various system configurations throughout the

remainder of this section.

7.1 Basic Set Operations and Calculus of Probability

In order to predict the reliability of a system given the reliability logic
diagram and the probabilities of success (or failure) of the individual items,
it is necessary to understand basic set operations and the associated calculus of
probabilities. See Appendices A.4 and A.5 for a brief introduction to these
techniques and a summary of basic results. For example, suppose that the system
under consideration is composed of three items, A, B, and C in a series logic as

illustrated in Fig. 7-1 below.

—2 B o[

Figure 7-1 Series Logic
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The successful operation of the system is equivalent to each of the items operating
or not failing. Let A denote the event that item A is operating, B and C similarly
denote successful operation of items B and C. 1In this terminology A represents the
event of successful item operation. The event that all three items operate is

denoted by the logical intersection of the events A, B, and C and is denoted by
ANBNC

or simply
*
ABC.

Now let the probability that item A operates under stated conditions be P(A), and
similarly for B and C. The probability that all three items perform successfully
is given by

P(A) P(B) P(0),

provided the events A, B, and C are independent, that is, that the occurrence of A
does not in any way alter the probability that B occurs, etc. with respect to the
other events. Further discussion concerning the notion of independence is given in

Appendix A.4 . If the events are not independent the probability may be written as
P(A) P(B|A) P(C|AB)

where P(B|A) is the probability that B occurs given that A has occurred. In this
section the independence assumption will be used very liberally because of the
resulting complexities in not using this assumption, and also because the items
can sometimes be defined such that the assumption of independence is reasonable.
However, the user of the techniques should not automatically assume independence
without some self-questioning.

If the system consists of three items as illustrated below

———0u| A | — —e

Figure 7-2 Mixed Logic

* The simpler notation i.e. ABC will be used, and the alternate notation i.e. ANBNC
is cited in this introductory discussion so that the reader will be aware of it, as
this alternate notation is also widely used.

56



then the components B and C are said to be in parallel. The successful operation of
the system is equivalent to the operation of (A and B) or (A and C); expressed in
another way it may be stated as the operation of A and (B or C). Thus the logical

rules may be stated as
(ANB) U (ANC) or AB + AC

or

AN((BUC) or A(B + 0.

The symbols for the intersection or product are ANB or AB as were used above for
series logic and for the sum or union are A\J B or A + B. The first expression may
be obtained from the latter by performing the logical multiplication of A with the
union of B and C. The probability that the system performs successfully is given

by the
P[A(B + C)]

or

P(A) P(B + C)

if A, B, and C are independent. The probability of B + C is the probability that one
or the other or both of the events B and C are successful. One rule for finding the

probability of B + C is
P(B+C) = P(B) + P(C) - P(BC).

This can easily be seen by using the following Venn diagram. Let B and C be denoted

by the overlapping events as shown below.

ap

Figure 7-3 Overlapping or Intersecting Events
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The shaded portion represents the intersection of B and C and if one obtains the
P(B) and adds the P(C) one sees that the P(BC) is counted twice, thus it must be
subtracted from the added probabilities to obtain the P(B + C), which is the
probability assaciated with the occurrence of all events enclosed by the boundaries
of the events B and C.

Another way in which one can obtain the probability of the successful operation
of B+ C is to use the fact that failure occurs only if both B and C fail, i.e.
B C. Thus

P(B+C) = 1-P(BC)

1 - P(B) P(C)

assuming independence. Note that since B and B are complementary events, that is,

one or the other of these events must occur, then

P(B) + P(B)

[]
=

or

P(B)

1 - P(B).

The following numerical examples are given for illustrating the notions introduced

so far.

Example 7-1

Let the system be as follows:

<]

2] —

—]

B

Figure 7-4 Logic Diagram for Example 4-1
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Let P(A) = .99, P(B) = .95, P(C) = .90, and P(D) = .95 and assume
that the events are independent under the given operating conditions. Then
the successful operation of the system is given by

(]

P(S) P[AB(C + D)]

P(AB) [P(C) + P(D) - P(CD)]

0.9405 [0.90 + 0.95 - 0.855]

0.9405 [0.995]

R

0.936 (rounded to 3 decimal places).
The same result is obtained by using the complementary event and thus

P(S) P(AB) [1 - P(C) P(D)]

0.9405 [1 - (.10)(.05)] = 0.936 as before.

The latter way is usually simpler and will be used throughout this section with few
exceptions. Again the reader is cautioned that the use of the above formulas implies
independence of the events A, B, C, and D.

The set of items A, B, and C may be considered a success path or path (success
understood) and likewise A, B, and D constitutes a second success path. The system
will fail if either A, B, or C and D fail, and these three sets of items constitute
cuts of the equipment. In Sec. 7.4 the notions of paths and cuts will be used to
obtain bounds on the probability of success (or failure).

Certain diagrams may be used to aid in the probability calculations and

interpretation. Consider the use of a tree diagram for Ex. 4.1 above.

Failure

Success

Figure 7.5 Tree Diagram for Example 4.1



The probability of success is given by
P(A) P(B) [P(CD) + P(DC) + P(CD)].

Such tree diagrams can be easily sketched with experience and the probability
expressions written down by hand. However, such techniques‘would be limited to
relatively simple systems. It will be assumed here that for very complex systems
one will use a computer program solution. However, the needs exist for a basic
understanding of the techniques in order not to incorrectly apply a particular
technique. Ref. 36 presents a more detailed discussion of the tree diagram approach.

Another approach which can be applied to relatively simple systems is that of
using Boolean algebra, an algebra of sets. Just as one can perform operations of
addition with sets or events as above. Ref. 37 presents a complete discussion of

this approach. A brief discussion of Boolean algebra is given in Appendix A.5.

7.2 Applications to Various System Configurations
In this section the concepts of Sec. 7.1 will be applied to logic configurations

where the model can be written by simple visual inspection.

7.2.1 Series Configuration
If the items of the system are in a series configuration, that is, if each
item must operate in order that the system will successfully perform its function,
then the probability of success is given by
P(S) = P(AlA2 s An)

where there are n components in series configuration as indicated in Fig. 7-6:

—— A |—] A [— ... A |l— o
1 2 n
Figure 7-6 Series Configuration
If the events Al’ A2, ey An are independent then
P(8) = P(Al) P(A2) s P(An)
n
= igl P(Ai)‘ (7-1)
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If all the items have very high reliability a useful approximation is that

n —_
P(s) = 1- I P(a). (7-2)

If all the items are identical then Eq. 7-1 becomes

P(S) = [P@]" = [1-rP@]" (7-3)
In fact it can be shown that the approximation Eq. 7-2 is a lower bound to P(S), i.e.,

P(S) > 1 -n PG,

where all the items are identical.

7.2.2 Parallel Configuration
If several items are in parallel, that is, the system operates if one or more

of the items operate, then the probability of successful operation is given by

P(S)

1 - P(all components fail)

n —_—
1 -0, PGay), (7-4)

where a parallel configuration is illustrated below.

®

Figure 7-7 Parallel Configuration
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Another configuration might be one which requires at least k out of n success-
ful items in a parallel configuration in order for the successful system operation.
In this case the probability of success is given by the following if all the items

are identical.

N fn i n-i .
P(S) = iék (i) P(A) [1 - P(A)] (if all itmes are identical) (7-5)
or
pe) = 1-45 (Dt - ren™ (7-6)

where <2> is the number of combinations of i items taken from n items, that is,

(Z) = _:LT%i_)T (7-7)

Eq. 7-6 would be easier to apply if the k were small compared to n. A similar expres-
sion may be written in the case of non-identical items, however, the case of identical
items is more typical. Such formulas are useful for a system such as a nuclear
reactor in which one needs only a certain number of control rods to shut down the
reactor, or in the case of an airplane which needs only two engines of four in order
to take off, or in majority voting logic schemes.

It is important to note that independence is assumed in the above approaches.

In particular, if all the items were subjected to a critical environment during the

mission, then the events of failure may not be independent as assumed above. Similarly,

{f failure of one item increases the stress and thus the probability of failure of

another item, the independence assumption may not be correct.

7.2.3 Mixed Configurations

Parallel-8eries. A parallel-series configuration is as shown below in Fig. 7-8.

- —%]
~——— —e
By B, I'Bnl

Figure 7-8 Parallel-Series Configuration
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The probability of success is given by using the fact that either Al’ +e+y A must
n

all operate or Bl’ ooy Bn must all operate or both. The simpliest approach ts to

first apply the series formula replacing Al’ ey An by A and Bl’ ey Bn by B, thus

reducing to the more simplified versions shown in Fig. 7-9.

4]

Figure 7-9 Reduction of Configuration in Fig. 7-8

Thus

(]
=z

P(A) 14 P(Ai)

and

]
n=s

P(B) 14 P(Bi)'

Then one uses Eq. 7-4 for parallel configurations to obtain

P(S) 1 - P(A) P(B)

or in expanded form

P(S) 1-[1-"PA)] [1 - P(B)]

n n
1- [ -0 RG] (1 - 1) P(3,)1.07-8)

i
In this approach one has a tool for simplifying complex circuits of systems step-
by-step until it is reduced to a relatively simple logic econfiguration. The same
approach will be applied to some other examples below.

Series-parallel. Let there be a subsystem of m items in parallel and n of these

subsystems in series as shown in Fig. 7-10.
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T Alm [ ——l A2m l— o Anm T

Figure 7.10 Series-Parallel Configuration

The probability of success for the ith subsystem Ai containing m identical
items in parallel is given by

m —
I. P( 1j

- 5L )
and the new simplified configuration becomes that shown in Fig. 7-11.

P(Ai) = 1

Figure 7.11 Reduction of Configuration in Fig. 7.10

As the Ai are in a series configuration

n n

P = B orap - @ a- I RGE ). G-9)

It is not necessary to treat the m, as being equal to m for all i, and the above
formula could be generalized by replacing the m by m, i=1, ..., n. Many con-
figurations can be treated by one of the above configurations. Two examples are
given below to demonstrate some of the formulas, although the examples are worked

from basic considerations.
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Example 7-2
Let the configuration be as shown in Fig. 7-12.

N I~
Bl | c
A — —— —_—e
| s - b, |—| b, |~
' 2 1 2
Figure 7-12 Configuration for Ex. 7-2
where
P(A) = 0.99
P(Bl) = P(Bz) = .90
P(C) = 0.95
P(Dl) = P(D2) = .98.

and the events are assumed to be independent.

Now
' P(S) = P(A) P(B)(1 - P(C) P(D))
where

P(B) = 1 - P(Bl) P(Bz)

P(D) = 1-P(D) = 1-P(D)) P(D,).

Note that one cannot write P(D) = P(D,) P(D,), that is the event D fails
is not equivalent to D, and D, both failing to operate, but that either
one or the other or bo%h fail%ng to operate. Substituting the numerical
results yields

P(S) (0.99) [(1 - (0.10)(0.10)] [1 - (0.05)(1 - .982)]

0.933.
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Example 7-3
Let the configuration be as shown in Fig. 7-13

B
] —
|
|2
— e
H
c
E | E
1 | 2
Figure 7-13 Configuration for Ex. 7-3
and the associated probabilities be
P(A) = 0.95, P(C) = 0.98, P(Bl) = P(Bz) = .95,
P(D) = 0.90, P(E)) = P(E,) = 0.90.
Then if the above is replaced by
S1
*~— — o
52

Figure 7-14 Reduction of Configuration for Ex. 7-3

66



P(5;) = P(A)( - P(B)) P(B,))
= (0.95)(1 - (.05)2) = 0.9476

P(C)(1 - P(D) P(E))

P(SZ)

= (0.98)(1 - (0.10)(1 - (.90)2)) = 0.961.

7.3 Conditional Probabilistic Approach

We have seen from the above discussion that when the reliability logic diagram
consists of series, parallel, and/or mixed configurations, the mathematical logic
model can be written directly and easily. However, complex systems cannot always be
reduced to a convenient configuration as stated above. In such cases it may be
convenient to use the fact that the probability of success of the system given a
particular state of the subsystem (which may be for either one item or a collection
of items or an environmental state) multiplied by the probability that the subsystem
is in the particular state. This result applies when the states Bi’ 1=1, ..., n

of the subsystem are exhaustive and mutually exclusive, that is

P(Bl+Bz+B3+...+Bn) = 1
(the B's include all possible events or occurrences)
and
BB, = 0

(the B's are mutually exclusive or have no common occurrences).
Hence the system success probability P(S) is given by
P(S) = & P(SlBi) P(B,). (7-10)

The proper selection of the Bi’ i=1, ..., n can aid in the solution of the problem.

Essentially one wishes to select the states B, such that the logic diagram reduces to

i
a form for which the probabilistic model can be written easily. See Ref. 38.

Example 7-4

Consider a system of five (5) items functionally arranged in the
configuration shown below. The success paths flow from left to right,
and there are no right to left portions in a success path. Success

paths are AIAS’ A2A3A5, and A2A4, but A1A3A4 is not a success path.
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_‘A .

Figure 7-15 Functional Diagram for Ex. 7-4

The solution using conditional probabilities is given first and then a Boolean

algebra approach is shown in order to illustrate the difference.

Using Conditional Probabilities

Select events B1 = A2A5, B2 = AZAS’ B3 = AZAS’ B

(mutually exclusive) and exhaustive. The selection of items is quite arbitrary.

4= A2A5 which are disjoint

One could just as easily write the probabilistic model using other items. Now

P(Bi Bj) = 0 i 4 i, i, =1, 2, 3, 4
and P(Bl + 32 + B3 + BA) = 1
or
P(AzAs + A2A5 + A2A5 + A2A5) = 1.

The reliability logic diagram can be simplified as indicated below for the various
states of items A2 and A5. The conditional probabilities of success given the

various states Bi are given in the last column of Table 7-1 where 1] and 9 denote

the probabilities of successful operation and failure under stated conditions of
the respective items Ai’ i=1, ..., 5. The system success probability may be

expressed as
P(S) = pypc(l - qya49,) + Pyas(p,) + 4yP5(py) + 4,95(0)

PoPg = PoP5d;939, + PpdsP, + 4,P5P;
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and after some algebraic reduction using p =1 - q

State
Bl = A2A5
B2 = AZAS
B3 = AZAS
B4 = AZAS

P(S) = pyPg * P,P3P5 + PyP,
+ P1P2P3P4P5-
Table 7-1

Conditional Logic Diagrams and Associated Probabilities

Conditional Probability

Logic Diagram of Success
N

~— :}E{: —e 1 - 9,454,
E

*—— —e
*~—— - e
®&—— No Success Path —® 0
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Using Boolean Algebra

The Boolean algebra success model is

B(S)

P{AjA, + A (4.8, + A1}

P{AlA5 + A A AL+ MM L

and expanding using Theorem 4 of Appendix 4 and substituting the item success
probabilities p will yield the same results as were obtained above using conditional

probabilities.

7.4 Models Using Cuts and Paths

The concept of cut sets and success paths (or tie sets) offers another approach
to the development of reliability prediction models for systems having complexities.
In particular this approach is advantageous where the same item may appear more than
once in the reliability block diagram. Such a situation could arise where a system
must perform a number of functions but some items are used in more than one function.
Here a different reliability logic diagram could be prepared for each function where
the same item will appear more than once. Another situation could arise where
different functions are to be performed by the system during subsequent mission
phases, thus leading to a different reliability logic diagram for each phase where
the same item will appear more than once. The cuts and paths approach can be used
to obtain an exact model, but this will usually be quite involved and the advantage
is that an approximate model can be readily developed. The more important results
are given in this section as derived in Ref. 39. The system reliability is
defined as the probability of successful function of all of the items in at least
one tie set or the probability that all cut sets are good. A tie set or success
path 1is a directed path from input to output as indicated in the simple system in
Fig. 7-16A. The tile sets or success paths are 2, 5; 1, 3, 5; and 1, 4, 5, respectively.
A cut set is a set of items which literally cuts all success paths or tie sets.
One is normally interested in the minimal cut set; i.e., the smallest or minimal set
of items such that the elimination of any one item would no longer make it a cut.
This is because a nonminimal cut set corresponds to more item failures than are
required to cause system failure. In the above example the minimal cut sets are
1, 2; 2, 3, 4; 5. Note that 1, 5 is not a minimal cut set since 5 is already a cut
set and is a subset of 1, 5. A cut set cuts the line of communication between input
and output. A cut set is good if at least one of its elements is operative. The
system failure probability or system unreliability is the probability that all tie
sets are bad (a tie set is bad if at least one item fails) or the probability that
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at least one cut set is bad (that is, all its items are bad). Hereafter, cut set
will usually mean minimal cut set.

Let Ti’ i=1, ...,'I denote the tie sets, I in number; and Cj, j=1, ..., J

denote the cut sets, J in number. The above statement for system reliability R can

be expressed as follows.

R = P{T1 + T2 + o0 + TI} = P{at least one tie set is good} (7-11)
or
R = P{Clc2 vee Cj} = P{all cut sets are good}. (7-12)
J
The sets Cj’ j=1, ..., J contain common items and thus R # jgl P{Cj}.

Equivalently the unreliability is expressed as

1-R = Pffifé see Ti} = P{all tie sets are bad} (7-13)

or
1-R = P{Ei + Eé + eee 4+ Ej} = P{at least one cut set is badl. (7-14)

Similarly the tie sets Ti’ i=1, ..., I contain common items and thus

I
1-R #,0 P{T;}.

IN — 3 S }——— OUT

Figure 7-16A Simple Reliability Logic Diagram
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Figure 7-16B Reliability Graph Corresponding to Functional Logic Diagram

Formulas 7-12 and 7-13 are not convenient for computation as the cut and tie sets
contain common items. The probability that all cut sets are good (or that all tie
sets are bad) cannot be obtained by multiplying the individual probabilities that

the cut sets are good (or that the tie sets are bad). The "good" (or "bad") cases
must be enumerated in order to perform the required computation and the corresponding
probabilities added. However, this approach does not lend to a computerized approach.
The formulas 7-11 and 7-14 can be expanded into a sum of probabilities associated
with one set, two sets, etc. as shown in standard probability texts. These expanded
forms can then be 'chopped off'" at desired points to obtain bounds to the system
reliability. The above are exact formulas for the system reliability and unreliability.
Bounds can be obtained by using the basic probabilistic inequalities given below.

A computer program, which is described in Vol. II - Computation, has been developed
for Eqs. 7-20 and 7-21 and for further generalizations of these bounds.

"
¥

P{T, + Ty + =+- TI} <z P{Ti}, (7-15)

2

o
[

P{T, + T, + *++ T, } >z P{T,} - I P{T, T, },etc.(7-16)
1 1 i i< i,
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Thus an upper bound RUl and a lower bound RLl to the reliability are respectively

R
RL1

T P{Ti} (7-17)

T -
P{Ti} z P{Ti Ti 1 (7-18)

T2



In the same manner another upper bound is obtained,

= £P{(T, }- ¢ P{T. T.}+ I P{T, T. T, }. (7-19)
“u2 i 1<, 12 i<t i1, 1,

The summations are over all possible combinations of the subscripts taken 2 at-a-time,
3 at-a-time, etc.

Similarly the inequalities of Eqs. 7-15 and 7-16 can be applied to the cut-set
form of the equation for unreliability of Eq. 7-14 to obtain

1-R < ZP{Cj}

or

R>1-1L P{Cj} = R, (7-20)
and by using two terms
R<1-zpP{c.y+ I pl{c,c, } = . (7-21)
< { J} z { 3y j2 Rys
313,

Example 7-5

Consider the reliability graph given in Fig. 7-11. Assume
independence between items and let the probabilities of success
for each of the items be p, = 0.93, Py = 0.86, Py = 0.92, p, = 0.95,
Py = 0.98. The probabilit%es for the“ties and cits are as follows:

P{Tl} = p{2 5} = 0.8428
p{'rz} = p{135} = 0.838
P{T3} = p{1 45} = 0.8658,
and
P{c;} = 1- p{I2} = 1- .0098 = 0.9902
P{c,} = 1- p(Z3 %) = 1-0.00056 = 0.99944
P{c,} = 1- p{35} = 1-0.02 = 0.98.
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Upper and lower bounds for the reliability are given by using Eqs. 7-17,
7-18, 7-19, 7-20, and 7-21, respectively,

R
R

P{Ti} > 1 (not useful as RUl < 1.)

0.843 + 0.838 + 0.866 — P{1 2 3 5} ~P{1 2 4 5} -P{1 3 4 5}
= 0.2848
RU2 = 0.2848 + 0.6850 = 0.9698 = R (This result is equal

to the system reliability)

R, = 1- P{Ej} = 1-0.03036 = 0.96964
Ry; = 1-I P{C,} + £ P{C, C, } = 1 - 03036+ 0.00024 = 0.96988.
3 3 i1 g,
= 0.96988.

As stated by Messinger [Ref. 39] the bounds based on the cut sets are best
in the high reliability region and those based on the tie sets are best in the low
reliability region. Hence the bounds RL2 and RU3 are the preferred bounds in the
above example and RU2 in this case saves no computation as it is the exact probability
of system success, as there are only three tie sets and the bound uses all combina-
tions of tie sets up to and including three sets.

In more general problems in which there are J cut sets the number of terms to
be obtained in the lower and upper bounds computations are J and J(J-1)/2 respec-
tively. This is compared to 2J-l terms obtained by expanding either Eq. 7-11 or

7-14 using tie sets or cut sets respectively.

7.5 Multi-Phase Mission

The approaches given thus far in Sec. 7 are applicable to a given mission phase
and more general treatment must be given to certain multi-phase missions. This
approach is useful for the type of situation as experienced in a lunar orbit
mission or lunar landing and return mission in which the environment and the
configuration changes with the successive phases of the mission. In such a mission
an item used in several phases may have different probabilities associated with each

phase. Consider the following configuration for example.
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2= e - 2

Phase 1 Phase 2 Phase 3

Figure 7-17 Multi-phase Configuration for Ex. 7-6

If the event of success in phase 1 is denoted by P(Sl), and similarly for phases
2 and 3 by P(Sz) and P(S3), then the probability of mission success P(S) is given
by the following relationship

P(S) = P(Sl|El) P(82|E2;Sl) P(83|E3;Sl,82),
which can be written in gemeral form for p phases
P(S) = P(Sl|E1) P(SPIEP;Sl,Sz, cees sp_l). (7-22)

These formulations guide the computational procedure so as to include the effects of
environmental stresses in the jth phase and the previous stress history in phases

j-1, j-2, ..., 1, having obtained the probabilities for the items in each of the
phases. Usually one has to enumerate all of the conditions for each phase and sum

the products of the conditional probabilities over possible combinations of conditioms.
One approach is patterned after that given in Sec. 7.3 and is illustrated in the

following example.
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Example 7-6

Consider the example given in Fig. 7-17. Let the probabilities
of success for the various items in phases 1, 2, and 3 of the mission
be as given in the following table.

Phase 1 Phase 2 Phase 3

P(lIEl) = 0.99 - -

P(2|E)) = 0.95 - P(ZIEB,Sl,Sz)
P(3|E1) = 0.9 P(3|E,,S;) = 0.96 -
P(4|E)) = 0.98 P(4[E,,S;) = 0.99 -

- P(5|E2,Sl) = 0.97 -

- P(6|E,,S,) = 0.9 -

- - P(7]E5,8,,8,)

- - P(8|E3,Sl,52)

For this example consider the various ways in which success in Phase 1
can occur. They are:

1) all items (1, 2, 3, and 4) operate for Phase 1,
2) items 1, 3, and 4 operate and 2 fails,

3) items 1, 2, and 4 operate and 3 fails,

4) items 1, 2, and 3 operate and 4 fails, and

5) items 1 and 2 operate and 3 and 4 fail.

All other combinations of successes and failures will result in failure
of Phase 1. For each of the above conditions it is necessary to obtain
the conditional probability of success in Phase 2, and similarly in

Phase 3. There is a slight simplification in this example in that no
common items are contained in Phases 2 and 3, hence it is not necessary
to consider all of the possibilities in Phase 2 prior to obtaining the
conditional probabilities in Phase 3. Consider now the conditional prob-
abilities for Phase 2 for each of the conditions given above and in

environment EZ'
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Case 1) p(52|sl, E = P(5 or 56 or 5-4|E2)

2)

1-P(3) [1-P(5) {1-P() P}

where P(S) indicates the probability of failure of component 3, P(5) success of

item 5 in Phase 2, etc.

Case 2) Same as for case 1 as item 2 does not appear in Phase 2; however, Phase 3

is altered.

Case 3) P(szlsl, E) = P(56 or 5-4)

= P(5) P(6) + P(5) P(4) - P(4) P(5) P(6)
Case 4) P(SZ|Sl’ E,) = P(3or 5-6IE2)

= P(3) + P(5) P(6) - P(3) P(5) P(6)
Case 5) P(S,[s;, E,) = P(5:6]E,)

= P(5) P(6)

Similarly one can analyze Phase 3 subject to the five (5) conditions of success

in Phase 1. The corresponding conditional probabilities are as follows:

Case 1) P(53|sls2E3) = P(7-8 or 7-2)
= P(7) P(8) + P(7) - P(2) P(7) P(8)
Case 2) P(S3|SlSZE3) = P(7-8) = P(7) P(8)

Case 3) Same as Case 1.
Case 4) Same as Case 1.
Case 5) Same as Case 1.

Hence the overall mission reliability P(S) can be obtained by summing the products of

tHe conditional probabilities for the respective cases 1) through 5). Thus
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P(S) (0.86639)(.99877) (.9669)

+ (0.04560)(.99877)(.9312)

+ (0.05530)(.96942)(.9669)

+ (0.017681)(.99647)(.9669)

+ (0.001129)(.9118)(.9669)

0.949.

The above approach uses the conditional probabilistic approach of Sec. 7.3. The
approach can be rather tedious as it usually would be necessary to list all of the
conditions for each phase and hence the number of different cases would be the
product of the number of conditions in each phase.

Because the above approach can be lengthy and tedious, an approximation to the
mission reliability is possible by use of the method of paths and cuts as described
in Sec. 7.4. In this approach the reliabilities of the components would be taken to
be the reliability up to the end of the last phase in which they are used. If the
probability of failure is assumed to be zero (0) for the phases in which a component
is not used then, the input reliabilities would be equal to the product of the
separate conditional probabilities for each phase.

7.6 N-State Logic Model

The considerations thus far in Sec. 7 have been based on a two-state model for
each item, one failed state and a non-failed or successful state. In this section
we consider a case in which some of the items may be considered as having two or more
failed states, such as opening, shorting, noisy, drift, etc. No additional tools
are needed to solve a problem of this type; however, the analysis does become more
complex. One might need to perform such an analysis in order to make correct
decisions between subsystem configuration. For example, See Ref. 40 which uses a
two-state and a three-state analysis of a particular circuit. As an example consider
a diode~quade with a shorting bar as shown in Fig. 7-18. The circuit fails if two
shorts occur in series (e.g., diodes 1 and 2 or 1 and 4) or if two opens occur in one
end (e.g., diodes 2 and 4 or 1 and 3). Otherwise the system performs successfully.
The probability of a diode opening is denoted by P shorting by P - Another technique
will be used below to obtain the probability of success or failure. It is certain
that an individual diode will either perform, or short, or open (assuming no other

mode of failure for this analysis). Hence
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ptpygtp, = 1 (7-23)

K K

— 4
Figure 7-18 Diode-Quad with Shorting Bar

As there are four diodes consider the expansion of Eq. 7-23 to the fourth power.

Thus

1L = (p+py+pd* = p*+4p3py +p) + 6p%(py + p )2 + 4plpy + p )3 + (py + p )"

4 3 3 2.2 2 2.2 3 3 2 4 53
PT + 4pipy + 4pipg + 6p°pg + 12p°pyp  + 6p°p] + 4p(py + 3pip, + 3pypi + pJ)

L) 3 2.2 3 4
+ Pg + 4p0ps + 6pspS + 4pspS + Pg-
This expression yields all the various combinations of shorts, opens, and no failures
for the quad configuration given. The coefficients yield the number of ways in

which a certain combination can occur. For example, consider the term
2 .
12p®pyp 3

these are 12 ways of obtaining 1 open, 1 short, and 2 operating diodes. That is,
there are 4 ways of selecting the shorted diode, 3 ways of selecting the open diode
from the remaining 3 diodes, and the last two can be selected in only 1 way. Thus

4 x 3 = 12 ways of obtaining this particular combination. If there is only one short
and only one open, a failure cannot occur according to the above statement of failure.
Hence, this term is put into the success probability in the following formula.
Similarly each term can be treated to determine which portion of the combinations of

opens and shorts contribute to failure or success.

=
[}

b 3 3 2,2 2 2,2 2 2
(p* + 4pop” + 4p p  + 4p°py + 12p%pyp . + 2p®pZ + 8ppip, + 4ppyp2)

+

2,2 2,2 2 2 2 3 4 3 2,2 3 b
(2p%pg + 4ppg + 4ppg + 4ppgp. + 8pPoP; + 4pp] + Py + PRP, + 6pGp2 + 4pypl + pl)

P(S) + P(F) respectively,
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where P(S) and P(F) are given in parentheses above. Because Py and ps are very small

compared to p the above expressions can be approximated by the following.
. b 3 3 - 2.2 2.2 . 2 2
P(S) p' + 4pyp® + 4p7p_, P(F) 2p°py + 4pTPy 2py + 4pg
and the actual probability of success is bounded by
4 3 3 _ 2 2
pt + 4pgp> + 4pdp < P(S) < 1 - (2py + 4pQ).

Example 7-7
Suppose for the diode+quad given in Fig. 7-18 above

p = 0.99
Py = 0.0080
Py = 0.0020

.9606 + 0.0388 < P(S) < 1 - (0.000128 + 0.000016)
0.9994 < P(S) < 0.99986.

It must be emphasized that independence of the events has been assumed
throughout the above analysis. If the diode~quad were exposed to a critical environ-
ment in its mission life or if failure of one diode increased the probability of
failure of another diode, then the probability of success would be altered by the
appropriate conditional probabilities of failure under the given conditions.

The above discussion just touches on an important topic area such as an N-state
analysis. In actual practice an analysis which takes the possible modes of failure
of each component into consideration and which gives the subsystem behavior for each
failure mode would result in an extremely large number of cases to examine. This can
be true even for a two state analysis. Hence one must cope with the dimensionality
problem by first identifying the more likely weaknesses of the equipment and then to
perform a detailed analysis on these components such as an analysis of a particular
redundant configuration as for the diode-quade. The logical operations and the
probability analysis for the N-state situation are more complex than that for a two-

state analysis but the same basis techniques are applicable.
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8. Models Considering Time

In this section the explicit use of time is considered for multi-item problems.
A straightforward approach is to develop a logic model as in Sec. 7 where item suc-
cess and failure probabilities are expressed probabilistically as attributes, and
then to substitute for each attribute the appropriate time measure as described in
Sec. 4.2. This will be discussed first in Sec. 8.1. For some problems the sub-
stitution approach is not applicable, and a more involved convolution approach is
discussed in Sec. 8.2 for these problems. The approaches presented in Secs. 8.1 and
8.2 can be used for the first time to failure of a system where the individual items
can have many possible time to failure distributions such as gamma or log-normal.
However, most often it is assumed that all the items have exponential failure dis-
tributions. Where this assumption is made, the system reliability prediction models
of Sec. 8.1 and 8.2 are applicable regardless of how much operating time has been
accumulated and if it is known that all items in a system are non-failed. Further,
if the exponential failure distribution is assumed for all items, then the methods of
continuous Markov processes and difference equations can be used to develop reliability
models without first developing a logic model. This approach is acknowledged in
Sec. 8.3, along with other approaches which are somewhat specialized. The final
Sec. 8.4 contains the development of a general redundancy equation which is suitable
for general reliability prediction and which also may be used for reliability alloca-

tion decisions.

8.1 Logic Model Substitution

The logic form of reliability prediction models can be readily extended to
explicitly consider time. This is done by simply substituting the applicable
probabilities of success or failure as functions of time, R(t) or F(t), for each
item, into the multi-item logic model. Such a substitution is possible where the
R(t) or F(t) for each item is applicable for the time t of interest, which means that
reliability prediction models for certain systems such as the classical standby
redundancy and the rope models cannot be developed by this method. The following
sections will treat this and considerations other than logic based model substitutions.
In this section several of the logic based models from Sec. 7 will be extended via
examples to consider time explicitly. Those not treated can be readily developed
and are shown in most reliability books and handbooks. Exponential failure time
distributions for items will be used because of its conventional emphasis. Other
distributions can be readily substituted for first-failure time models, but as they
lead to complications if later failures are explicitly considered they are not so

widely used.
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Series System. If all the items of a system must operate in order for the

system to perform its intended function, then the items are said to be in a series

A A

system. In Sec. 7.2.1 it was stated that the probability that n items A g3 wres A

l’
operate, assuming independence, is given by

n
P(s) = I, P(A).

If item Ai has a mean time between failures (MTBF) of 8, or a failure rate Ai(=1/91)

i
and if the mission time is TM’ then

-2, T —TM/ei

R(Ai) = P(component A, survives time TM) = e = e .

i

provided the A, is constant throughout the entire mission. If Ai changes with the

i
mission phases one must perform the computations for each phase separately for
non-serial systems. Some simplification can be made in this procedure. The mission

success probability is given by

-A, T =T ZA
n
ps) = Moe *M o= e ML (8-1)

that is, the failure rates can be added for the n components in series to obtain an
overall system fallure rate. If some failure time distribution other than the
exponential is appropriate the R(Ai) can be expressed as the appropriate integral
of the density function. These integrals are tabulated for almost all density
functions of interest in many standard statistics texts.

Parallel Configuration. If n items are in parallel then system success is

equivalent to at least one item operating. Another way of stating system success is
that the items do not all fail. Using this logical form the following result is
obtained

n
P(S) 1-.1

). (8-2)

For small values of AiTM (all i) the following approximation can be used to simplify

the above calculations.

-, T A212
i'M i™M
1 -e = 1 (1 AiTM + -1 ced)
= ATy
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Using this approximation

P(S) = 1-T, ﬁ A; for AT, very small. (8-3)

M
8.2 Standby and Rope Models

Development of reliability prediction models for some systems cannot be
~accomplished by substitution in logic models. Such systems are those where all
the items are not used throughout the time interval of interest (standby redundancy)
and where the probability of success for some items change at uncertain times in the
" time interval(rope redundancy) of interest. For these situations prediction models

can be developed using the convolution concept.

8.2.1 Standby Redundancy

Case 1-Perfect Switch.
Suppose that a system consists of m items, m-l on standby, for use when one of the

items fails in use as indicated in Fig. 8-1.

——\ET

_l A,

*r— [ X X J _— e

!E!T

A

_ /-

Figure 8-1 Standby System With m-1 Items on Standby
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It is assumed for the present that the switchover devices are 100 percent reliable
(i.e. that the failure rate is zero in the standby operation), and that each item

has an exponential failure time distribution with failure rate Ai. Let TM be the
mission time. Now if the system 1s to perform its function for the time TM’ the total
of the operating times must exceed TM' If tl, tys eres t, are the times to failure

of each of the respective components, then the probability of successful operation of
the system P(S) is equivalent to the probability that the cumulated failure times

.of the m components exceeds TM’ or

P(s) = P(t; +t oot 2T,

2 M

Consider this problem for the case m = 2, in which it is necessary to obtain the

probability that t = t + t, 3_TM. Now
-A,t
171
p(t)) = A e , 0 <ty <=
-\, t
272
p(tz)—-)\ze ,Oit2<°°

and the probability that t, + t, 3_TM is given by the double integral

1
P(S) = 1 - P(F) = 1—P(tl+t2<TM)
t t-t At =\, t
_ 1 171 272
= 1-ax, [ [Te e dt,de; (8-4)
0 o0
where the region of integration is shown in Fig. 8-2.
tzA
TM-
y 7/,
/17N
;1+t2<TM\\‘
1 /¢ 1//| 3 tl
T

M

Figure 8-2 Region of Integration
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Integration of the equation (8-1) yields

AT A “A,T, AT
e My L oo 1M _ . 2Hy If A, # A
X, 27
2™
P(S) =
Rk [1 + A,T,] If A, = A (8-5)
€ 1M 2 - 10 -

The above formula can be interpreted as the probability that item 1 survives the
entire mission time plus the probability that item 1 fails in time ty but that
t2 z_TM - tl (the contribution of the second term).

In case the items are all identical and perfect switching exists then the

probability that a system of m components (m-1 standby components) survives T, is

M
given by
P(S) = P(t1+t2+"‘+tmiTM)
-AT, A212 Am'lrM m-1
= e (1+XTM+ 7] +...+—m)—r—). (8-6)

Note that this formula gives the probability of 0, 1, 2, ..., m-1 failures for a

variable having the Poisson distribution with mean number of failures given by ATM.

Case 2- Imperfect Switch. If imperfect switching were taken into consideration the

second term in the above would have to be multiplied by the probability that the

switch-over occurs, P(sw) say, and hence

-2, T A -x, T -A,T

P(s) = e ‘M4 X 1A P(sw) [e - e 1. (8-7)
271

See Ref. 41 for a statement of the above result when several standby components
are allowed. Also see Sec. 8.4 for a more general formula for combinations of

redundancy.

8.2.2 Rope Model
In some physical situations system failure does not occur until all or k out

of n items fail (for example, as strands in a rope), but the failure of some of the
items increases the stresses on the remaining items and thereby decreases their

reliability.
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Case 1: Suppose that the load on a system is constant and that initially n items are
sharing the load. As the elements fail the remaining load is equally shared by the
remaining elements. Thus if the original stress per element is So/n, then the
subsequent stresses increase SO/(n-l) for 1 failure, SO/(n-Z) for two failures, etec.
The increase in stress on each item will usually result in a corresponding increase
in the failure rate for the items as the ratio of the operating stress to the rated
stress Sr increases. Let the stress ratio be h as given by

h = operating stress _ SO/(n—f) - SO

rated stress S s S
T T

where f is the number of failures and s(=n-f) is the number of survivors. If the
rated stress is exceeded by SO/s then the system is assumed to fail. Let the maximum
number of failures be n - k, or k be the number of minimum number of items for
operation. Thus for non-failed operation the stress ratio must be less than unity,

i.e.
SO/k

< 1,
r

or
s = n-f > k.

Now suppose that the failure rate for an individual item at time t for stress ratio
h is denoted by A(t; h).
In this first case assume that

A(t; h) = th,

that is, A increases linearly with h, 10 is a constant. The fallure rate for the

system AS is given by

where s is the number of non-failed or successful items. Now

h = %0
s S
r
and thus
s = o .0% _ S
s 8°%s s -
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which is constant. Ref. 42 treats this case and Ref. 43 has included it as a
special case of finding the reliability of a parallel redundant system when the item
failure rate is A = A(h), a general function of the stress ratio.

Thus in this case of constant system failure rate the time to failure of the
system is given by

TS = tl+t2+...+t

" where f is the number of failures. Now if each ty is assumed to have the exponential

failure time density function, 1i.e.

p(ti) = AS exp(-xS ti),

the distribution of TS is given by the f fold convolution of p(ti),

= * *
p(TS) p(tl) p(t,) * ... p(ty).
For n = 2 items,
p(Tg) = p(ty) + p(ty)
TS
= [ p(tp p(Tg-t))dey
t,=0
1
=2 T
- 2 §'S
ASTS e

Similarly for the f fold convolution one obtains

£ £-1
* AT exp{-A_T.}
pry = o)t = e FE 10 (8-8)

This is the gamma density function with shape parameter f and the same scale parameter
A as for the exponential distribution. See Ref. 44 for further details in the deri-
vation of the distribution. For f = n-k+l yields

n-k+1 n-k
Ag T exp{—ASTS}

p(Tg) = T (a—k+1)

where Ts is the time the n-k+lst failure occurs.
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Case 2: Suppose that the failure rate of an individual item is of the general form
A = A(h)

of the stress ratio h, where A(h) is not necessarily linear as indicated in Fig. 8-3.
The result is given in Ref. 42 in the form of a complex integral with values of the

residues to be determined.

>

X (%/1,000 hrs.)

h (Ratio of Operating to Rated Stress)

Figure 8-3 Dependency of Failure Rate A on h

8.3 Additional Approaches
Several other approaches which are used for deriving reliability models explicitly

concerning time are briefly identified.

8.3.1 Continuous Markov Process

Another method of deriving conventional reliability models when all items in
the system have an exponential distribution is to use the approach of a first order
Markov process and difference equations. A text [Ref. 3] is devoted mainly to
the derivation of models based on this approach. A space-state diagram relates the
possible transitions between the possible system states. The postulate is applied:
the probability of a state change during (t, t+dt) is Adt plus terms of smaller
order than dt and the probability that more than one change occurs is smaller than
dt. This approach leads to a set of linear homogeneous differential equations, which
can be solved for the probability of success as a continuous function of time. Thus
it is the approach used in Sec. 4.5 for the development of the Poisson process.
Different system configurations (e.g. series, active-parallel, and standby-parallel)
lead to different success probability functions, which are identical to those
obtained from the approach in the preceding Secs. 8.1 and 8.2.
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The Markov process approach can be readily extended to include maintenance,
which is really the advantage of this type of model formulation. Here the state-
space transition diagram is expanded from only failure transitions to include both
failure and repair transitions. The same postulate can be applied to repair as was
applied to failure, resulting in an expanded set of differential equations. These
can be solved for availability formulas. This Markov process formulation is thus
best suited for system level modeling where both maintainability and reliability
are to be explicitly considered, but where the operational profile and the system

are not so complex that an analytical approach becomes unwieldy.

8.3.2 Extreme Value Theory
An approach for obtaining certain prediction equations can be based on concepts
of order statistics when the lifetime distribution of all items are identical and
independent. Here the probability density function is derived for the particular
item which, when it fails, will fail the system. For each of the following systems
this item is:
(1) Series: Shortest lifetime pdf from n series items.
(2) Parallel: Largest lifetime pdf from 2 parallel items.
(3) Series Strings in Parallel: Largest lifetime pdf from %
items from the shortest lifetime from n items.
(4) Parallel in Series String: Smallest lifetime pdf from
n items from the largest lifetime from £ items.
As in most practical problems all items do not have identical pdf's, the general
applicability of this approach is restricted.

Example §-1

If a system consists of n items in series, e.g., linked together
in the form of a chain, the lifetime of the chain cannot be more than
that of the weakest link. The life length distribution of the chain
would be that of the shortest life length. Ref. 43 treats this
problem. The probability that the shortest life is less than t is

given by

Fl(t) = 1 - Prob{lives of all n items are greater than or

equal to t}
= 1-[1-FBI" = 1-RY()
n-1
p,(t) = n[l - F(t)] p(t).
where R(t) = 1 - F(t) is the reliability of a single item
p(t) = lifetime density function of a single item.
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Suppose that the distribution function for the lifetime of each member of the
chain is Weibull, i.e.

_, B
1 - exp{- ()}, for x > v,

F(t) =

then
: B
F(t) = 1-exp(-n( X))
n
and the
gty |1 ty P
Pl(t) = ( . ) exp{-n( - ) ).

8.3.2 Flowgraphs

Flowgraphs are a graphical method of representing simultaneously a set of
equations which have been applied to electronic and other engineering problems.
They augment a classical mathematical approach. There has been some exploratory
application of flowgraph techniques to the development of reliability prediction
‘models [Refs. 45 and 46] but this approach is not widely used. An advantage of
a flowgraph approach would be that if one is already skilled in their use for
engineering problems then this may be a ready method for learning about the development

of reliability equations.

8.4 General Redundancy Model
Three of the redundancy models which have been introduced are those for:
(1) all items functioning, i.e. Eq. 8-2 which will be referred
to as items in parallel,
(2) standby redundancy where there is a "perfect" switch, i.e.
Eq. 8-6, which will be referred to as spares, and
(3) standby redundancy where there is a switch, 1.e. Eq. 8-7,
which will continue to be referred to as standby redundancy.
Interest is with a general reliability model for parallel arrangements of identical
items of any of these three redundancy approaches where the failure criterion can be
one or more items must work. In addition to reliability prediction this model
can also be used for the general allocation problem concerning optimum selection of
a redundant configuration. This model is an input for a general reliability cost

tradeoff program (RECTA) which is covered in Volume II - Computation.
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In this section the following notation is used:

n identical items in parallel,

m identical spares,

r identical items in standby redundancy,
o, number of items that must work,

P switch reliability, .
8 the number of switches which work,

t the mission time, and

A the failure rate.

The general formulas for the cases in which (a) n, = 1 and (b) ng > 1 are
derived separately. Although the first case is a special case of the latter, case
(b), it is useful to derive the simpler case first for a better understanding of the

more general formula.

8.4.1 Reliability of a System for n, = 1
In this section the general formula is derived for the situation that only
one item must work.

The probability that s switches work is given by the binomial formula

r S r—-s
(s) p (1-p) .

1f s switches work then the m spares plus the s items in standby result in mts items
on "standby", (manual or automatic). Thus the reliability is given by the

formula

T r s r-s
R, = s£0 [(s) p (1-p) Rz(n, m+s; t)] s
where Rz(n, mts; t) is the reliability for a mission of length t given s switches
work, n active items and m spares are available, and hence mts standby items. The

reliability R, is given by three cases:

L
Case 1: m+s = 0. In this case the reliability is given simply by the probability

that at least one of the n active items survives time t, that is,

n

R - 1- [1-et7.

L
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Case 2: m+s = 1, In this case the reliability is the probability that the n

active items plus the one (1) standby item survive time t, or

R, = 1- jgo (g) (-3 e A(3),
where
A = ?EIE%IYT Z e_xtz(l_j) (e et d(At,), general formula,
t —Atz(l—j)
= ! e d(Atz) forms = 1

and for specific values of j we obtain,

A(0) = 1-e7Mt,
A(l1) = At, and
A = @Ay, =2, . o

Case 3: mts = 2, 3, ..., = or m+s is a positive integer larger than 1.
If m+s is larger than one (m+s>1) the formula for Rl is the same as the above with
the exception that the A(j) are given by the following formulas which include Case 2

as a special case.

At

A0) = 1- o ()™ 4 (mbs-1) (Ae)™Ts2

+ ... + (m+s-1)1],
AL = O0)™5/(m+s)!, and

(3-Dat - -
ap = —= ors (1G-DA™®™h = (@rs-1) [(3-1ae]™S2
(m+s-1) 1(§-1)
m+s
oo+ D™D e 1)1y + —iillaig-, i=2,3, ..., n.
(3-1
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Derivation. The derivation of the expression for RZ is given in the following
discussion. First consider the probability that a system of n items in parallel
(all active) will survive time t. Let t(n) be the longest time of survival for
the n items and hence what is required is the probability that t(n) > t. The
probability that all n items fail in the interval (0, t) is given by

Fi(e) = Plr, <t} = F'(t) (8-9)

and the probability that at least one item survives time t is given by 1 - Fl(t)

or

1 - [1-e77EyR, (8-10)

Pit >t
{(n) }
The probability density function for t(n) is given by differentiating Fl(t) to yield

=it =it
Pl(tl) = nf[l-e l]n-l Y

where tl is substituted for t(n) for convenience.

It is now desired to find the time to failure distribution for the m+s
"spares" in order to find the total survival time for active and spare items. It
is assumed that the n parallel active items have all failed at time tl and then the
mts spares will be used one-at-a-time until all have failed. Thus we want the
probability density of the time to failure of these m+s spares with the assumption
that one of them is used immediately, at time zero for the spares. The survival
time is the sum of m+s-1 times each of which has an exponential failure time density
function. Hence the frequency function for the sum (t2) is the Gamma distribution

-At

2

m+s-1
pz(tz) = e (xtz)

/ (m+s-1)!

where t, is used to denote the survival time of m+s "spares", automatic and/or manual.
The reliability Rz is given by the probability that the sum of the two survival times

as described above, tl + t2’ is larger than or equal to t, i.e.,

P(t, + t

1t 20,

The probability that the sum is less than t is given by the convolution integral

t
£0 pz(tz) Fl(t-tz)dtz,

t

where Fl(t—tz) is obtained by substitution in Eq. 8-9 above.
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t -at, (At,) -A(t-t,)
2 2 2°.n
£[*e mrs-Dy1 J117e I de,
¢ -ar. ()™l -jr(t-t,)
2 2 n n j 2
= é[ e —Y;;gjijj—'][jgo (j) (1)~ e 1 d(At,)
t -At, JAt
_n fn j -jat 1 2 2 m+s-1
= j£0 (j) (-1)7 e wre-D T ge e (Atz) d(Atz).
Hence, for mts > 1,
1R (n,urs,6) = Pty +t, <t) = jgo (?) -3 eI Ay, (8-11)
where
t -At,(1-3) _
A(}) = Gﬁs_il')—! ! e ? (Atz)m+s 1 dQat,) .

If m¢s = 0. There is no need for A(j), j =0, 1, ..., n, and we use Eq. 8-10

for n items in active parallel.

If m#s = 1. For j # 1 but an integer greater than or equal to zero

t -Atz(l-j)
A(4) = [e d(rt,)
0
o1 _=ae(1-3)
apy te b
and for j =1
t
A() = [dOt,) = At
0
If ms > 1.
t -At
MO = iy fe 2 o™ aaey
0

= l—e_Xt [(M:)m+s“1 + (m+s—1)(lt)m+s_2 + ... + (m+s-1)11/(m+s-1)!
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m+s

t
_ 1 m+s-1 0N 9]
A = oDl g (At,) dt)) = ey
t At
_ 1 2 m+s-1
AQ) = =Ty é e © (at,) d(at,)
At
1 m+s-1 mt+s-2
= — A - +s5-1) (At
AR = i e (OB (a+s=1) (At)
+ o+ D™ 1y 1]+ (™S
or in general for j > 2
(3-L)at
+s-1 -
A(§) = . — [[(j-l)lt]m 5 - mts-D) [(3-DAe)™S?
(mt+s-1) 1 (§-1)
m+s
+ ... + (—l)m+s_l (mts-1) !] + ﬁ)m__’_s .
(3-1)
Having obtained all Aj’ for § =0, 1, ..., n the results are substituted into Eq. 8-11
to obtain
P(t1 tt, <t),
and then the desired probability is the reliability Rl’ that is
Rl(n,m+s,t) = 1 - P(tl + t, < t).

This result must be obtained for each possible s and used in the formula for the

reliability of an item,

e

R, = I, [(;) P (1-p)"° Rl(n,m+s,t)] : (8-12)
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8.4.2 Reliability of a System for n, >1

Suppose that ng items must operate in order for a system to properly perform
its function. In the previous derivation ng = 1 and the distribution of life with
n items in active parallel was given by the maximum life for the n items. In this
case the time to failure is given as the time to failure of the n - n, + 1lth item.
The probability that the n - n, + 1th item fails in the interval (t, t+dt) is given
by

n-n -1

(t)dt = nl F©o] 0 ore] 0 ployde
p3 (no-l)!(n—no)!' P ’

where the probability density function and distribution function for a single item

are

p(t) = rerE,

F(t) = 1 - e-xt
Thus

p3(t) - ¢, no)ke-lt(no-1+l) - e_)\t]n—no

- ¢, no)le_)\tno EZO (n;no) ¥ T, (8-13)
where
C(n,no) = n!/[(no-l)! (n—no)!].

The distribution function of the time to the n-n, + 1th failure can be obtained by

integration of p3(t),

n-n n-n -t (k+n,)
0 0 k 0
F3(t) = C(n, no) z k2o ( K ) (-1)" e adt,
- ~ - k-
- e a nzno n-n (_1)k+1 1 e At3( +n0) 1
* 07 k=0 k (k+n0) ’
where t3 is used to denote the life-length of the n active items. Hence
n-n n-n -it, (k+n.)
_ 0 0 k+1 1 3 0
Fylty) = Clamng) I ( k ) -1) (Fng) + B(n, ny)

96



where

R “'“o) k 1]
B(n, no) = C(n, no) ké() [( Kk (-1) W (8-14)

It is now possible to derive the distribution of t2 + t3 where t, is the time
to failure of the mt+s "spares' and t3 is the time of failure of the n active items
in parallel of which n, must survive. Hence, by convolution of these two distribu-

0
tions the distribution of t = t2 + t3 is given by the integral

t.
| p,(t)) F.(t - t,))dt
2o P2t s 2245

2
or
mts-1
- A _ -
P{t. + t, < t} = }[Ae Atz _(EL__] . [C(n n.) nzno <n 1’10>
2 3 - 0 (m+s - 1)! > 707 k=0 k
-a(t-t,) (ktn,)
k+1 1 2 0
« (=1 —(k_"“nBT e + B(n, no)] dtz.

or
n-n
0

kK 1 n-ng —Xt(k+n0)
C(n.,no) kEO(—l) E_'_—n'a ( Kk )[A(O) - e A(k+n0)

P{t, + t3 < t}

where A(0) and A(k+no) are obtained by using the previously derived equations for
A(3) for j = 0 and for j = k+n0.
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9. Environment and Bound-Crossing Problems

In this section various approaches which have been covered thus far in Parts
II and III are brought together. Mainly the material is concerned with a multi-item
system which is to operate in an environment which is known probabilistically or
which is comprised of functionally related items. In particular, practical conclu-
sions which can result from the reliability prediction analyses are noted at the ends
of Secs. 9.2 and 9.3. This is the final section of this report concerned with
analytical detail which has Immediate practical significance. The following sectioms
of Part IV mainly present the results of investigations on approaches for bringing

into the analysis more detailed information bearing on the dependence question.

9.1 Environment Described Probabilistically
System reliability logic models such as those developed in Sec. 7 when all
items are independent can be expressed in functional notation as

R = R(B), R = (Rl’ cesy st X} Rn)

where R is the reliability for a system and each Rj’ j=1, ..., n is the reliability
of a single item. If each Rj is conditional on environment leg_and if the probabil-
ity density of the environments p(s) is known, then the unconditional system reliability

is the expected value,

E(R) = [ R(R) p(s)ds. (9-1)
)

This is the extension to multiple item models of the approach noted by Eq. 4-15 for
single items.

Eq. 9-1 would be applied to the situation in which each item is used at the
same environment and the enviromnment is described by a probability density p(s).
Note that this means that the average reliability of each item cannot be obtained
separately (using Eq. 4-15) and this average reliability substituted into the system
reliability equation R = R(R). That is

JR,[8)(R,|s) p(s)ds # [(R,|s) p(s)ds [(R,|s) p(s)ds
1 2 1 2
8 s S

for the simple case of two serial items. Whether or not using the incorrect separate
approach yields conservative or optimistic results depends on the details of the

particular problem. Some generalized statements of this sort have been developed
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for certain multi-item stress-strength problems and they will be noted in the follow-
ing section.

The system reliability model R = R(R) may result from any of the configurations
and approaches noted in Sec. 7. The item reliability conditional on environment
could result from testing. An item reliability measure could be of the form of the
various measures of Sec. 4, or it could be based on the bound-crossing concepts
of Sec. 5. For bound-crossing concepts where the bound is fixed, such as in Sec. 5.2,
the performance attribute y and the environment s need to be dependent, i.e.,
p(y,s) # p(y) p(s), in order for the item reliability to be conditional on environ-
ment. Application of the fixed bound would give

yu
[ ptyle)dy = R|s .
)

This resulting bound-crossing based reliability measure can then be readily inserted
into Eq. 9-1 as an leg_along with other reliability measures for a multi-item system.
An expanded reliability definition which is essentially an elaboration on
Eq. 9-1 has been proposed in Ref. 47 where the orientation was for catastrophic and
drift failure modes for an item in a probabilistic environment. Eq. 9-1 is thus the
basis of an approach where there is a probabilistic environment if the orientation
is for separate physical items where there is a reliability measure for each item
such as has been the viewpoint throughout Part III, or where the orientation is
for separate failure modes where multiple modes are specifically identified as
in Secs. 4.1 and 4.3, in Ref. 47, and developed in Part IV.
For stress-strength problems where the bound is a distribution such as in
Sec. 5.3 the item reliability is always conditional on the environment (stress).
Extreme value approaches cited in Sec. 8.3.2 for obtaining system reliability
models which explicitly considered time are also applicable for certain multi-item
stress strength problems.
The following section will expand on the multi-item stress-strength problem

using detailed illustrations.

9.2 Stress-Strength Problems

Multi-item stress-strength problems considered here will demonstrate an
application of the more general remarks made in Sec. 9.1. The general problem area
is the extension of the single item stress-strength reliability measure of Sec. 5.3

to a multi-item system, The potential mistake in reliability prediction here is to
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obtain separately the reliability of each item in a system such as using Eq. 4-15,
and then to substitute this into system logic models as those from Sec. 7. The
correct development of multi-item stress-strength problems is presented in Section
9.2.1 and this is followed with some important practical conclusions in Section
9.2.2.

9.2.1 Prediction Approaches

Two basic approaches are used: (1) the calculation of the conditional proba-
bility that the strength exceeds a given stress and then integrating this result
over the assumed stress distribution, and (2) the derivation of the probability
density function (pdf) for the smallest (or largest) value of strength in a sample
of n items, and then using the joint distribution of this density with that of stress
to obtain the desired probability. Mathematically the first computation can be ex-
pressed as follows:

(1) Obtain the probability that y > s, for a single item, i.e.

0
P(y > sg) = [ p(ydy,
0

where S0 is the fixed stress level, and p(y) is the pdf of strength.
The examples will use uniform distributions and systems with few items,
but the approaches are of course applicable to different distributions
and systems with many items as well as with complex configurations.

(2) Obtain a general expression for the system reliability R in terms
of the item reliabilities, knowing the system configuration. For each
item, substitute the result of (1) into the system reliability model

to obtain a system model as a function of the stress R(s).

(3) Integrate the above reliability model over the stress pdf, p(s),

i.e.

[ R(s) p(s)ds ,
s=0

where R(s) is the system reliability as given by (2) above.

The second computation follows the procedure described below:
(1) Obtain the distribution of the smallest strength in the case of a
series logic (or largest strength in the case of parallel logic in which
only one item must operate). For example, the probability that the
smallest item in n selected at random from a distribution function F(y) has

a strength less than y is given by
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Py, <y) = 1-[1-FyI°

that is, 1 minus the probability that they (the n strengths) are all
larger than y.

(2) The result in (1) is the distribution function for the smallest
observation and it must be differentiated to obtain the pdf for the
smallest strength Yoo pl(ys).

(3) The joint pdf of strength Vs and stress s is given by

pl(ys) p(s)

and it must be integrated over the region Vg > s to obtain the
probability that the strength is adequate to withstand the

imposed stress, i.e.

[fp1G) pls)dy  ds.
y >s

The examples given below will illustrate these two approaches.

Example 9-1

First consider a single element with strength between 80 and
100 psi and stress between 60 and 85 psi. If the density functions
are uniform on the respective intervals and the stress and strengths
are independent the following two-dimensional plot indicates the
region of inadequate strength.

X

100

Strength | Item satisfactory (y>s)

Region of inade-
’/// quate strength (y<s)
g0 —— —I r—l:%&——»s

60 Stress 85

Figure 9.1 Region of Inadequate Strength
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Since the two-dimensional distribution is uniform the probability that
Yy exceeds s 1s given by 0.975, i.e.,

y>s
, 885 L 8

1-555 [ ds dy = 1 - 355 £0[85—y]dy
1 2 85

1-+=1[8y-L 1 -1-0.025=0.975 .
500 T

Thus the item reliability is 0.975.

Example 9-2

Now consider a serial system with n items and suppose that
each item has the same strength distribution, the items are selected
at random, and that they are all exposed to the same stress given by
the stress density function above. Thus the probability that this
system will be adequate is equivalent to the probability that all
items are adequate; that is, each of the strengths will exceed the
stress value.

Approach 1: Now suppose that the stress is considered to be known or fixed

at s, then the probability that an item selected at random has strength exceeding
8, is given by

1 if o < 80

P(y > 55) = {100-3
70

% if 80 < s, < 85.

Hence the probability that all n items have strength exceeding 50 is given by

1if 8y < 80

n
Py >89 = { (100 - )"

30 if 80 < s

o < 85.

The expected value of Pn(y > so) for the uniform stress distribution is the

unconditional probability of no failure

85 n 80
n 100 - s 1 1
E[P (y > s()] £0 (~—20 ) 55 ds + {)Ol 7z ds

_ <1oo-s>“+l (_ 1 )85_'_3
vy 20 20 x 25 8]0 5 -

For n = 2 this probability is 0.95416.
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Consider the second approach as described above for the same

Approach 2:
problem. The probability that the strength of a serial system 1s adequate is
equivalent to stating that the minimum strength of n strengths selected at random

from the strength distribution will exceed the stress value. The probability that

the smallest value of ¥io i=1, ..., n (say y(l)) is less than y is given by

P(ys <y) = 1- (probability all values are greater than y)
= 1-(1-FuN"
where
F(y) is the distribution function for y as shown below.
F(y) ?
&
~ G
Z5 F(y) =1
s Y
e
F(y) =0 > ]
80 100 y(psi)
Figure 9-2 Strength Distribution Function
Hence 0 y < 80 psi
1
F(y) = { 35 (v - 80, 80 <y < 100 psi
1, y > 100 psi.

Now the probability demnsity function for the smallest observation is

p(y) = nll - FMI™T e,
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Thus the joint density function for y and s is
p(ys) p(s)dys ds

-1 )
= nl1 - FMIT ply) ¢ pls) dy_ ds .
Using the fact that y and s are uniform probability density functions

p(y) = z—lo,p(S) = %

Hence the probability that < s (that is, a failure occurs) is given by
y ¥g =

1 n-1 1 1
| [al1 - 55 (v, ~ 80)] 36 ° 35 ds dy,
y<s
85
- 1 - n-1 1 _ 1 -
i éo pll =95 (g = 81" " 55 ¢ 35 [85 -y lay,

For n = 2 this reduces to 0.04582 and thus the probability that ¥y > s is 0.95416.

Example 9-3

Suppose there are three items in parallel and that at least
one must work (strength exceed stress). Let the strength distribu-
tions be identical and uniform as given above and let the stress
distribution be the same as above.

Approach 1: Using the first approach we obtain the probability that the
strength of a single item exceeds a specified stress sg and then integrate this
result over the stress distribution to obtain the unconditional probability. The
probability that for a single element, strength exceeds stress g 1s given by

1 if sg < 80

Py > sp) = { 100 - s

20

0

if 80 < s, < 85.

0

The probability that at least one of three exceeds the value g is

1 - Plall three have strength less than so]

= 1-1[1-2@>sy)l?,
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and hence the unconditional probability that the system is adequate 1is

= 1-[1-P(y > s,] } - ds
60 0 25
80 85 100 - s
1 0 1
= [1.-2ds+ [ {1-[1— (————) ‘]3}—ds
&0 25 %0 20 25
85
- 4 80 - s \3; 1 -
= 3 + {;o (1 + ( 5 > ] 55 ds = 0.999218.

Approach 2: Using this approach the density function must first be obtained
for the largest strength. The probability that the largest of three strengths exceeds

y is given by
1 - P(all three strengths are less than y)

and the probability that the largest is less than or equal to y is

F3(y)
where
0 > y < 80
Fly) = %(y—BO), 80 < y < 100 .
1 . y > 100

Thus by differentiating F3(y) the pdf of the largest strength is obtained, i.e.

1 s y < 80

3 (1
p(y) = 50 (36

0 s y > 100

(y - 80)), 80 <y < 100 ,

and thus the probability that y exceeds s is given by
85 ;85
3L 2 1 -
1 £0(fy 55 | 25 (v - 80)° 55 ds) dy = 0.999218.

9.2.2 Practical Results
The results of the examples in Sec. 9.2.1 will be used to illustrate the

error introduced by incorrectly treating probabilistic dependence. Recall that the
single item reliability from Ex. 9-1 was 0.975., In Ex. 9-2 for two series items, the

correct approach resulted in R = 0.95416. If the (incorrect) approach was used
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of treating these as two independent items in series was used then R = 0.9752 = 0.950525.
Thus the incorrect approach resulted in an unwarranted pessimistic reliability for a
series system. Further, in Ex. 9-3 for three parallel items the correct approach
resulted in R = 0.999218. If the incorrect approach of treating these as three
independent items had been used, then R = 1 - 0.025%3 = 0.99925. Thus for a parallel
system the incorrect approach resulted in an unwarranted optimistic reliability.
Although the magnitude of these errors for these examples is not very large, it
should be recognized that only few items were considered. The errors in the above
examples illustrate the results of more extensive analyses in Refs. 48 and 49. These
references show these results with greater elaboration for certain situations where -
each item is identical and at the same stress:

(1 Serial System. Obtaining the reliability of each item separately

and then substituting these into a series system model of multiplying

item reliabilities will yield pessimistic system reliability predictionms.

(2) Parallel System. Obtaining the reliability of each item separately

and then substituting this into a logic reliability model will yield

optimistic system reliability predictions.
These results have been shown for situations where the stress-strength distributions
are normal [Ref. 48] and where they are rectangular [Ref. 49]. Some practical
guidelines gleaned from these results and expanded on in these Refs. are:

Serial Systems

(1) Mount items so they experience the same environment, i.e., a compact

unit.

(2) Use consectively manufactured items in the same system, i.e., same

manufacturer and lot.

(3) Select items with similar failure modes.

Parallel Systems

(1) Mount items so they experience different environments, i.e., different

planes and location.

(2) Use items in the same system from different manufacturers and lots.

3 Select items with different failure modes.

9.3 Functionally Related Variables

A class of multi-item bound-crossing reliability prediction problems are
those where there is no meaningful reliability measure for each item in the system.
In the multi-item stress-strength problem of Sec. 9.2 (where in the more general
terminology the item strengths were item performance characteristics and the stress
was the interface characteristic) it was appropriate to have a reliability measure

for each item and a multi-item or system reliability measure. The problem being
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considered here is a more general one where there is not a performance attribute
for each item, but the performance attributes are only for the system. That is, the
functional relationships between the system performance attributes and the item
and interface characteristics are such that any possible variation in any characteris-
tic can always be compensated for by some possible variation in a different
characteristic. The problem here is to obtain the distribution of the performance
attributes from the distributions of the item and interface characteristics. Then
the bounds are applied to the system performance attributes for the system relia-
bility prediction. We will not be concerned here in Sec. 9.3 with mixtures of
this more general problem with those of Secs. 9.1 and 9.2. The reader interested
in such complexities is referred to Part IV. Some practical problems which have
been widely treated in reliability analysis are those for performance variation
analysis of electronic circuits and of systems in general [Ref. 7].
The basic procedure for reliability prediction of functionally related
variables 1s as follows:
(1) Select the performance attributes of interest. These most often
are functional outputs.
(2) Develop the deterministic mathematical models at nominal conditions
relating the performance attributes to item and interface characteristics.
(3) Estimate the variability of the item and interface characteristics.
For electronic parts these typically reflect the initial (manufacturing)
variations, aging effects, and the influence of environmental inputs.
(4) Compute the following:
a. The expected variability of and possibly the correlation
between the performance attributes.
b. Identify sources of performance attributes variability.
Possible sources include contributions from the linear, non-
linear, and interaction behavior of the deterministic models,
and from variations and correlation between the independent
variables.
c. Predict the probability of successful performance by
assigning limits to the expected performance attribute
variations.
The more practical benefits are using the results of (4) for identifying designs
which are susceptible to failure, and for providing redesign guidance. They are
also useful for comparing alternate design approaches, and for aiding the assignment
of specification limits. Normally the prediction of the probability of acceptable

performance that can be obtained from a performance variations analysis is not highly
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precise because the approach is an approximate one, but more so because of the lack
of precision in the data on part and interface characteristic behavior.

A solution to the problem in closed form is almost never possible, but
mainly provides a better understanding of what an approximate approach is attempt-
ing. (See the discussion in Section 11 concerning Mode 2 for identification of
an approach in closed form.) What is usually done in practice is use an approximate
approach such as the method of moments (sometimes called the propagation of errors).
Other approaches are identified in Ref. 7. The method of moments approach is

presented below as an illustration.

9.3.1 Method of Moments

In the moments approach the functional relationship is expanded in a Taylor
series. Higher order terms may be used, although most applications only use the
linear terms. Measures of location and variability of the item and interface
characteristics, which are the independent variables, are described by means and
central moments. The degree of association which might exist between two independent
variables is described by the correlation coefficient. The mean and central moments
of the dependent variables are obtained from the application of expected value
theory, which gives the mean and central moments of the dependent variable as
functions of terms obtained from the Taylor series expansion and the mean and central
moments of the independent variables. The distribution of the performance variables
is then obtained by either assuming a distribution, or by fitting a distribution by
the method of equating moments, for example. Correlation between the various
performance attributes can also be obtained by this approach, but this is not
usually noted or developed in reliability applicatons of this technique.

For simpler problems, requiring the use of only first order terms, it is
possible to use this technique without a computer. Conversion of the functional
model to a Taylor series yields sensitivity and possible interaction terms which
readily provide information on variability sources. When the problem becomes more
complex, as an involved functional relationship and high order moments, a computer
is required. Advantages of this approach are simplicity for easier problems, and
resultant information on sources of variability.

Mathematically the method of moments for a single performance attribute is
as follows:

If the relationship
yo= oy, Xy, aee, %)

can be approximated by a linear function
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= + cee +
y c0 clxl + cnxn,

it is possible to approximate the distribution of y for certain distributions of
the variables X0 i=1, ..., n. For example, if x5 is normally distributed with
i and if the correlation between Xy and xj is rij’
then the distribution of y is approximately normally distributed with mean

mean M, and standard deviation ¢

12

iy} cygt e + ..o+,

1M1

and standard deviation.

~ 2.2 2.2
o{y} [clc1 + ...+ o2 4 20,0000, + ...
1/2
+ ch-l cncn—lcnrn—l,n]
Example 9-4
Model

The linear amplifier, for which the circuit is shown in
Fig. 9-3 is used here to illustrate a reliability prediction
analysis using the method of moments.

For audio frequency applications, the transistor is adequately
described by the hybrid or h-parameters. See Ref. 50 for further
details on the circuit description and the derivation of the mathe-
matical model. From circuit analysis the model for current gain
is as follows:

A - __R3 Pre Y1
i R3+ R4 1+h U h U, + h,
oe 2 U. o+ (Ae) 2 ie
1 1+h U
oe 2
where
y. - RLR2 v, - _R3RG
1 R3 + R4 2 2 R3 + R4
h
€ = h, h -h_ h. .

ie oe re fe

Part Characteristics
The means and standard deviations of the part characteristics
are contained in Table 9-1.
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Part Parameters-Means and Standard Deviations

Table 9-1

Linear Amplifier Circuit Component

Parameter Mean Standard Deviation
R1 47.05K ohm 0.97K ohm
R2 7.03K ohm 0.17K ohm
R3 380.9 ohm 8.54 ohm
R4 468.7 ohm 11.14 ohm
hfe 102 11.1

'hre 576 x 1076 0.46 x 10-6
h o, 556 x 10~ mhos 68.6 x 107 mhos
hie 254 24.9
v
cc
o — —
-12 volts
3K
& 390 ohms
>
2 J[C2
<
10uf
/ N
( 2N526 10uf
R S
Cl 2 RA
6.8 K ohms < 470 ohms

]
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The following matrix contains the correlation coefficients T, between
pairs of the equivalent circuit transistor parameters. The résistances
are sampled at random from separate distributions and are uncorrelated

with each other and with the h-parameters.

hfe hoe hie hre
hfe 1 0.595 0.912 0.165
hoe 1 0.608 0.400
hie (by symmetry) 1 1
Analysis

As suggested in the proposed approach one first performs a
sensitivity analysis and checks the function A, = A, ( ) for
non-linearity and for interaction. Because the fundtion is essentially
linear, the first and second moments of the performance can be obtained
from the linear approximation to the performance, i.e.

1

+ c, h + c, h + ... + c, R4

A ¢g t ¢ hge Ty Bye 8

39.38 + 0.387 h,. + 118.3 h_ - 0.742 x 10" h
fe re oe

- 0.006194h,  + 0.416 x 10”5 AR1 + 0.186 x 10~3 AR2

+ 0.0512AR3 - 0.0502AR4.

Output
The estimated mean and standard deviation of Ai are given by

a{a;} = 39.38 and

B{Ai} [(0.387)2 s2{hfe} + ... + (-0.0502)2 s2{R4} +

+ 2(0.387)(118.3) s {hfe} 8 {hre} r{hfe, hre} + .

+2(-0.742 x 104)(-0.00619) s {h_} s {n } T {n__, n, 112

3.91.
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Remark 1. A reliability prediction is obtained by assigning a desired limit and then

by obtaining a numerical value from any normal distribution table.

Remark 2. If the function could not be approximated by a linear function higher order

moments and/or distributions of the part characteristics would be required.

Remark 3. The standard deviations and means used in the above analysis were
inherent variations in the part characteristics. Variation as a result of operation
environment, inputs, stresses, loads, and/or aging were not included. The analysis
would be the same except that the total standard deviations would be larger than the
above. In addition, correlations between the behavior of the parts characteristics
may be introduced as a result of changes in a third variable, such as temperature,

affecting two or more part characteristics.
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Part IV. Refinements of Prediction Models

Some material concerning the structuring of reliability prediction models is
presented in this part. The intent here is to provide insight somewhat beyond the
current conventional practices. On occasion a hue and cry is raised as to whether
or not current conventional practices are appropriate. Anyone who has performed
reliability predictions and who has given serious consideration to the appropriate-
ness of these predictions has likewise on occasion felt a bit uncomfortable. Yet, to
many persons it is not obvious how to go beyond conventional practices.

The material presented in Part IV is directed toward those who are concerned
with the development of reliability prediction models. A frame of reference is
presented which will fit together details of certain reliability prediction problems.
There are strong limitations on the extent to which these notions can be applied to
real problems, with the main limitation being data.

To develop an approach to structuring certain features of reliability predic-
tion models which reflects more detail is a stumbling point. The difficulties may
eventually turn out to be elementary in hindsight, but documentation providing
guidance on the type of problem considered in the following sections is rare.
Remarks will be made freely in the hope that some may be of help in overcoming these
difficulties. The following questions introduce some possible stumbling points and
questions of interest.

(1) What is to be done if the conventional assumption of probabilistic
independence is not made? What are sources of dependence and how are
they reflected in structuring the problem?

(2) What are the features of a failure mode? How are variables treated
which are probabilistic but which do not have values that always
cause a failure?

(3) What is the pertinence of the typical engineering deterministic
equations used for obtaining performance and stress.

(4) What is the relationship between degradation or catastrophic
failure at the source (point of repair) and the manner in which system
performance will be affected?

(5) How are the above considerations brought together?

(6) What are the implications of replies to these questions on real-

world reliability predictions and on other reliability analyses?
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Two examples are considered in some detail in Secs. 10 and 11 to intréduce the
notation and to formulate or structure the reliability prediction problem. Sec. 10
is a discussion of an example which is intended to illustrate features concerning
catastrophic and degradation failures. A number of related problems are simultaneously
treated in a different example presented in Sec. 11. The purpose is to structure
the problems and not to obtain numerical solutions. Next in Sec. 12 the points made
in Secs. 10 and 11 are expressed in general notation which results in detailed
reliability prediction models. The above questions are replied to individually in
Sec. 13 based on the contents of Secs. 10, 11, and 12, serving as concluding remarks
for Part IV.

This material is somewhat related to earlier efforts at RTI supported by
NASA ORQA [Ref. 47].
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10. Catastrophic and Degradation Failures

There are two broad classes of failure modes which are popularly cited; these
are a catastrophic fallure and a degradation (or drift) failure. A degradation
failure is an unsatisfactory level of a performance attribute, and a catastrophic
failure is an abrupt change in a performance attribute, usually culminating in no
meaningful measure of the performance attribute.

The question here is, "Is there a unique relationship between the classification
of system failure into catastrophic or degradation and a similar classification of
the source (point of repair) of system failure?" The answer will be developed by
considering some failures associated with an electronic transmitter.

Catastrophic failure at the source:

(1) A part within a system opens or shorts. The result could be an immediate
catastrophic failure of an output performance attribute, thus a catastrophic failure;
or, the result could be a degradation failure of an output performance attribute.

For example, the heater winding of a temperature control oven opens and the carrier
frequency of a transmitter drifts. The oven winding open is an illustration where
the system would not immediately fail, but rather results in an increased probability
or later system failure.

(2) An input such as a supply voltage is completely lost. This results in
the complete loss of all performance attributes.

Degradation failure (or conditions) at the source:

(1)  An output performance attribute crosses a bound and is considered to
have failed. Here there is some value of the performance attribute present, but it
is outside of the desired range. This type of failure may have no single cause, as
there may be several different parts which could be changed in order to correct the
failure. There may be several items considered as failures according to the bounds
on the performance characteristic in each part's specification, or there may be no
part considered as having failed according to these criteria. Here there would be a
functional relationship between the output performance attribute and the characteristics
of the parts.

(2) An internal performance attribute crosses a bound, which causes an output
performance attribute to fail catastrophically. An example is an oscillator ceasing
to oscillate because of part characteristic value changes, with the result that an
output performance attribute fails catastrophically. This type of failure is similar
to the above as it may have no single cause.

The above examples illustrate that there is no unique correspondence between
catastrophic and degradation failure modes at the detailed level (source) to that

at the system output performance attribute level. That is, a catastrophic failure
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at the point of repair may show up at the system performance level as either a
catastrophic or degradation failure, and similarly for vice-versa. Further, a degra-
dation failure may not have any unique point of repair. The examples cited above

for degradation failures within a system were for cases where there was not a unique
repair point. It is possible there could be, such as where an output performance
attribute is only a transformation of a single part characteristic. A more specific
illustration drawing on the above example discussion is shown as Table 1l1.1 to

assist in summarizing these relations.

Table 11.1

Illustrating Output-Source and Catastrophic-Degradation

Failure Mode Relations for a Transmitter

System output performance Source of failure within the system
attribute behavior
Degradation Catastrophic

Degradation, e.g., carrier Oscillator drifted, Open winding of
frequency drift may not have a unique temperature control

source. oven.
Catastrophic, e.g., no Oscillator ceases to
output oscillate, may not

have unique source. Supply voltage lost.

Whether or not a failure is catastrophic or degradation will not be a dominating
consideration in the ensuing discussion. That is, it is not absolutely necessary that
identification of one or the other failure modes be maintained in the model. This is
a key point in structuring a detailed reliability prediction model, as there is a
tendency to carry along too much detail in the notation which culminates in side-
tracking. Introducing any detailed failure mode at the source in a particular problem
may utilize any of several description methods which will be covered in the following
sections. The method depends on the form of the given information. Of course there
are certain forms which could prevail, as for certain commodities. The notation which
will be used does not specifically identify the type of failure as to catastrophic
or degradation. Of course, the person setting up the problem will have a classification

in mind for each mode which is introduced.
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11. A Detailed Prediction Example

In order to aid the reader in becoming oriented a somewhat realistic problem will
be considered. Figure 11-1 illustrates an electrical circuit, a regulated voltage
divider using a zener diode as a reference. The typical electrical notation are first
shown in capital letters and the equivalent functional notation which will be used
in Part IV is given in parentheses in small letters. This functional notation will
be defined and discussed in a more general vein in Sec. 12.

The notation which appears in Fig. 11-1 plus several additional terms are

" discussed below.

Z Zener reference diode, assumed to be a constant voltage
source over the current range of interest,

Rl’ R2, R3 Resistors, each with a deterministic temperature relationship,
Ei = X Input voltage,
EZ = X Zener reference voltage,
Xq Ambient temperature in °C,
%, Resistance of Rl at 25°C,
X Resistance of R, at 25°c,
X¢ Resistance of R3 at 25°C,
EOl = ¥ Output voltage,
EO2 = Y, Output voltage,
ki’ i = 1,2,3 Linear temperature coefficient for the ith resistor,
R1 = ¥, Resistance of R1 at a specific temperature, Y3 = X, + (x3 - 25)kl
R, = ¥, Similar to Y3 ¥, = ¥g + (x3 - 25)k2,
R3 = Vg Similar to Y3» Y5 = g + (x3 - 25)k3,
I1 = u Current as designated in Fig. 11-1,
12 = u, Current as designated in Fig. 11-1
wz = ug Power of zener diode,
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u, Ambient temperature of the circuit,

Power of R2, and

R2 5
WR3 = u6 Power of R3.
°C(x3)
[
e ]
s Rl(y3)
3
4 I, (uy)

R, (y,)
B1(xp) B | 2 Egy(¥5)
:ZS: 0272
Z

R3(y5) EOl(yl)

Figure 11-1 Regulated Voltage Supply

Note: The symbols in parentheses correspond to those used in the problem
formulation in this section.

Some of the variables are continuous and have known or assumed probability density

functions (pdf's). These are:

Known pdf Comment
p(x1|ml) Xy, OF Ei’ has a probability density which is conditional

on no complete loss of EOl’ which is designated m .

p(xz,x3) Xy» or EZ’ has a probabilistic dependence with x3, or °C.
That is, temperature effect on the reference diode is not

known deterministically.

: p(x3) The probability density of temperature, which is the
marginal density of p(xz,xs).

p(x4) Nominal value of resistor R; is independent.

p(x5,x6) Resistors R2 and R3 are of the same nominal value, and
have a probabilistic dependence; when one is high, the
other also tends to be high.
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The circuit is designated as having seven different failure modes:

j =1
ji = 2
j = 3
j = 4
ij = 5
j = 6
j =7
m,

J

Complete loss of Ei’

Drift of EOl (or yl)

of values I'_ ,
1

Drift of EO2 (or y2)

of values T_ ,

2
Catastrophic failure
Catastrophic failure

Catastrophic failure

Catastrohpic failure

outside of an acceptable interval

outside of an acceptable interval

of Z,

of Rl’

of R2,

of R3, and

Event that the jth failure mode does not occur.

Catastrophic failures noted above are those which might occur as influenced by

the internal stresses.

It is known that each item is not initially catastrophilcally

failed. Additional known information concerns each catastrophic failure mode, m,

though m,. Relationships between the probability that these failure modes will not

occur and appropriate environments are known; thus P(mJ

vironment(s)...) are available for m, through m,.

...environment(s)...) =m (,..en-

3

Note that conventional graphs for

failure rate versus stresses such as those found in MIL-HDBK-217A [Ref. 27] could

provide this type of relationship.

The functional notation for deterministic relations will be such as ¥y =

y5(xgo%,), B(myJug,u,)

= m4(u3,u4), and uy =

ul(xl’x2’x3’x4)'

The question is how to structure the problem for the probability that none of

these failure modes occur, where no assumption of independence is made involving the

features noted above.

they are brought together into a composite model.

Mode m1

Each of the failure modes will be treated separately and then

Mode reliability P(ml) {s some known value between 0 and 1.
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Mode m,

Electrical equations are conventional engineering deterministic ones and are

used for obtaining the performance attribute EOl (or yl), i.e.

VX
E,, = = 2R oy (x,k X x,)
01 71 Vot Vs Y1 1¥p0%32%5:%g
where Y, and yg are known functions of Xq5 Xg and X - The zener reference voltage
X, is dependent on Xq the ambient temperature and the joint pdf p(xz,x3) has been

obtained. The mode reliability P(mz) is the probability that Y1 falls within the

interval of acceptable values, Fy . If p(yl) denotes the pdf of L then
1

P(m,) = Ff p(y)dy.
4!

However a difficult problem is implied by the above integration, that of obtaining
p(yl) using the functional relationship given above.

In some few problems a transformation can be defined relating the new variable
Yy to the original variables Xos Xu» Xgy X and the distribution of the new variable
obtained from that of the original variables by means of the Jacobian of the transforma-
tion, (See Ref. 51 for a description of the method.)

Usually the above approach is tedious or the integral cannot be obtained in a
closed form. In such cases, which is the usual situation, one has to use some other
approach. Often the method of moments is used in which Yy is expanded in a Taylor
Series using the first order terms (higher order terms may be used but seldom are) and
obtaining the moments of ¥1 (first and second order) in terms of the moments of

Xy5 X3, Xg, and X - Hence the distribution of Yy is approximated by the method of

moments.

Another procedure is to evaluate the integral

P(mz) = Ff p(xz,x3) p(XS’XG)dxzdx3dx5dx6
1

where T determines a region of integration of Xy x3, x5, and x6. This is still
difficul% but some approximations may be possible and a Monte Carlo simulation could
be used to obtain the estimate. However the latter approach would require a very
large number of trials if P(mz) is near 1 and a high precision of the estimate is

desired.
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Although each of the above procedures is suitable for estimating the reliability
of this mode, the latter one will be required for bringing together all modes for a

single circuit reliability model. This will be treated later.

3

The performance attribute E02 (or y2) is known:

Mode m

E = E

02 2> Y2 T %

9°

Mode reliability is defined to be the probability that Yy, (or x2) falls within Py s

i.e. 2
P(m3) = f f p(xz,x3)dx2dx3.

x
3 Yo

4

Electrical equations needed here are the conventional ones for the power stress

Mode m

7
W, = uy = E (I -1y xy(uy - uy)
where
. o ] El - EZ ) xl - x2
1 1 R1 Y4
T = u = EZ = xz
2 2 R2 + R3 Y, + s

The mode reliability P(ma) is defined as the probability of no catastrophic failure
of the zener reference diode Z. The relationship of P(mA) to fixed levels of the

stresses of temperature °C and power WZ is known:

P(m4|WZ,°C) = P(m4|u3,u4) = ma(u3,u4).

The power uy is a function of x (all the x's) denoted by uy = u3(§). The ambient
temperature u, is known, °C = Xg = U, Now x has a joint pdf denoted by p(x).

Hence the mode reliability is the expected value
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E[P(m, |uy,u)] = £m4[x3,u4<5>1 p(x)dx.

The reason for obtaining the expected value of the probability of no failure given
the stress is the fact that some or all of the x's are probabilistic variables having
pdf's. If the failure occurred when the stress exceeded a particular value then the

probability would be obtained in a manner similar to that of m, and ms.

Mode m5

No electrical equations are used as the relation of P(ms) contains only a single

stress, temperature, °C:

P(msl"C) = P(m5|u4) = ms(u4) where u, = x3.

Mode reliability is the expected value

E[P(m5|u4)] = f ms(x3) p(x3)dx3.
X
3
Mode me
Electrical equations are for the power stress WR
2
= = 2 = 2
"R, T U T T2% 7wy,

where uy is noted in m, . Mode reliability is similar to m,

P(m6| C,WRZ) = P(m6|u4,u5) = m6(u4,u5)
where u, = X4 and uy = u5(x2,x3,x5,x6) = uS(E')’ say where x' = Xy sXqsXg X o
E[P(mg|u,,u)] = £ mg[x,u(x")] plx")dx'.
Mode m,

The development here is similar to me s where Y, for me become Ys for m The

7°
m, reliability in functional notation is identical to that for me .
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Composite Reliability

The reliability of the circuit is the probability that none of the failure modes

occury

R = P(mlm2 ven m7)

Although this probability can be expressed as the product of conditional reliabilities,
R = P(m) P(m2|ml)---P(m7|ml, ey M),

this does not aid in the evaluation of the reliability in this example due to the
commonality of the variables x to the various modes. Thus the mode reliabilities
which were formulated individually in the previous discussion cannot be multiplied
together to obtain the overall reliability. The circuit reliability is obtained by
the evaluation of a multiple integral which simultaneously considers the probabilities

of non-failure of the seven modes. Thus

R = P(m) [ | m, (x) mg(xy) mg(x") mo(x") plx|m)dx
{Xl’x4} x'CT
51
and
x'CTr
xcry

where all terms are as developed in the preceding discussion. The region of integra-
tion is a restricted one for only certain values of x', that is, those contained in
I and Fy , is there a success. In words the reliability of the circuit is a multiple
in%egral o%er the acceptable regions of the variables defined by bounds. The integral
contains the product of the conditional probabilities of non-failure of those modes,
conditioned on the enviromment distributions.

The above reliability expression is rather formidable, indicating that considera-
tion of dependence resulting from correlation between variables and from the effect
of the same basic variables on more than one mode reliability yields a complex
relationship.

A numerical integration would be tedious and require a computerized solution.
It would not seem possible to provide a single computer program to treat a very wide
class of these problems although specific subroutines are available to perform
numerical integrations. Thus one must use an approximate numerical solution. The
simplest approach would seem to be a Monte Carlo simulation. Numerical computation is

discussed later in Sec. 12.2.
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12. General Model Development

The features which were contained in the example problem of Sec. 11 are
brought together and are expressed in general notation. This notation explicitly
allows much detail (known or starting information), but only part of this detail
would be expected in a specific problem. Keep in mind that the example of Sec. 11
was an illustration of this generalization.

In Sec. 12.1 a prediction model is developed for the series situation where
occurrence of any failure mode will imply system failure. Numerical solution
approaches are briefly covered in Sec. 12.2 for the series situation model. Next,
Sec. 12.3.1 briefly comments on extending the series model to include the explicit
treatment of time. The final Sec. 12.3.2 comments on the extension of the series
situation model to a parallel situation where some failure modes can occur but the

system remains unfailed.

12.1 Series Situation Model

A detailed reliability prediction model is developed for the situation where
the occurrence of any failure mode results in system failure. This will be referred
to as the series situation model. However, the reader is cautioned not to expect
that the final composite model will literally be a product of individual probabilities
of non-failure of each mode. Explicit consideration of mode dependencies results in

the final composite model being of a different form than a product.

12.1.1 Notation

Much of the material in Secs. 10 and 11 pertains to the selection of notation.
Seeing how to structure the detailed reliability prediction problem considered here
is aided by an approach which leans toward using common notation for mathematically
similar descriptions rather than using different symbols for the different physical
features having common mathematical descriptions.

As conventienally used:

t Time,

y=y(x), w=w(x) Functional relationship,

X Vector, i.e., x = (xl, Kys ooy xn),

P(A) Probability of the event A,

p(x) Probability demnsity function (pdf) of x, and
r Bounds (region of acceptable values),

Additional notation which is not so conventional and which will be explained
in the following sections.

di Event that a failure mode which will be referred to as direct-
fixed does not occur. i =1, 2, ..., 2. The event that this

failure mode does occur is di .
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e Event that a failure mode which will be referred to as direct-

]
variable does not occur, j = 1, 2, ..., m. The event that
this failure mode does occur is éj .
bk Event that a failure mode which will be referred to as bound-

crossing does not occur, k = 1, 2, ..., n. The event that
this failure mode does occur is Bk'
The d, e, and b will replace the m used in the example problem of Sec. 11 as
the failure modes illustrated there are now being classified into the three

types of mathematical descriptions which were used. Additionally,

X Common variable,
v, Performance attribute,
u Environment,

The shorter expression as noted below will be used to indicate the joint

occurrence of events.

Conventional Form: P(dl’ d2, v di’ ey dl) = P(dl) P(dzldl)
P(di|dl, dyy weey dy ) o P(d2|dl, dyy wevy dy_p)
'8
Shorter Form: P(d) = 1 P(dilg') where d' thus indicates appropriate
i=1

conditional events.

12.1.2 Common Variables

There are common variables x which influence the probability of certain failure
modes. The common variables may be deterministic or probabilistic; this discussion
emphasizes them as probabilistic. The complete probability density p(x) of all proba-
bilistic common variables is given information, including any dependence. No special
acknowledgement is made in the p(ﬁ) notation for those common variables which are
deterministic. Examples in the problem of Sec. 11 of common variables which were
probabilistic were all x's, for example, Xy input voltage; X3, ambient temperature;
4 resistance of Rl at 25°C. Thus common variables could be interface char-
acteristics such as supply voltage, load, or temperature. Also they could be internal

and x

characteristics of parts such as resistance or beta.

The common variables appear in functional relationships for obtaining perform-
ance attributes, Yy = yv(z) for all v and environments u, = uw(g) for all w as in
the conventional engineering equations where all variables are deterministic. Examples
of performance attribute equations were those for the y's in the problem of Sec. 11,
and examples of environmental (or stress) equations were those for the u's. Proba-

bility densities of the performance attributes y and the environments u will be needed

and are not usually known. They can be determined (in concept) from known probability
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densities of the common variables x and the functional relationships y(x)'s. When

the probability density of a performance attribute or an environment is known, in-
cluding any known dependence with common variables, they will be initially classified
as common variables. Thus if a p(y, x) or a p(u, x) is initially known, the y or u
will be introduced into the composite problem structure as y = x or u = x. This is
done for two reasons. The first is to avoid additional special notation for what

are ''special cases" in the context of the more complex composite model being formu-
lated. The second reason is to assist in insuring that some of the more devious
correlation effects are included, such as the following examples. In the problem of
Sec. 11 zener reference voltage X, was directly a performance attribute in mode m2
where Yy = X, and also appeared in several environment- and performance-equations.
The performance attribute probability densities which are obtained directly from test-
ing, either by necessity (its y = y(x) not known) or for convenience, would tend to be
of this nature. The temperature X4 also appeared in several environment- and
performance-equations, including that for mg where it was directly an environment

u, = X .

4 3

12.1.3 Modes

An undesired event which may or may not occur is a failure mode, e.g., the
loss of an input voltage, the opening of a resistor, or the drift of a performance
attribute outside prescribed bounds. There may be several failure modes for a single
item, e.g., the opening or shorting of the resistor, or a mode may involve more than
one item, e.g., an output voltage of an amplifier comprised of multiple items. A mode
may be a feature of other than hardware, e.g., physical shock impulse or a human error.

Thus, in general, a failure mode can be some undesired feature of a part within
a system, an input to a system, or an output of a system, including human features.
Further, what is physically a single item at the smallest level of repair may have
more than one mode associated with it, and a mode may involve more than one physical
item. The problem treated is primarily concerned with the non-occurrence of a failure
mode. The probability that a failure mode will not occur is either known or can be
determined from functional relationships and probabilistic methods.

Modes are classified below according to the manner in which they are treated
in the analysis. System and part failures are commonly thought of as catastrophic
or degradation, where a catastrophic failure is an abrupt change in some characteristic,
and a degradation (or drift) failure is a characteristic value outside of some bounds.
In general, each of the mode description types which are noted below may be for an
event which would commonly be considered as either a catastrophic or degradation
failure. That is, there is not necessarily a unique form of the mathematical des-

cription for either a catastrophic or a degradation failure. Catastrophic and
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drift failures are thus just a different method of classifying failure modes from
that which is developed. The example discussed in Sec. 10 illustrates this point.

Direct-Fixed Mode. The reliabilities of these modes are fixed values which are

known. These modes may or may not be dependent on each other, and the dependencies
are known. An example of this mode in the problem of Sec. 11 is m, the loss of the
input voltage. If the possibility had been considered of the parts being initially
catastrophically failed so that no circuit operation was ever possible, these would
~ also have been modes of this type.
The reliability of a single mode, d, is

0 <P <1.
The reliability of all direct-fixed modes is

L

R=Pd =1 P(dilg') (12-1)
i

In general these failure modes would be interface events and internal part events
which preclude the existence of some common variable. Thus in the example cited
the occurrence of ;‘, complete loss of the input voltage, will mean that some value
of the input voltage (and common variable) X5 will not be possible, thus p(xl|ml).
Also direct-fixed modes could be events completely aside from all common variables.

Direct-Variable Mode. Reliability of each of these modes is conditional on

some environment level, where there might be dependence between mode reliabilities
at fixed environment levels. Each environment is a function of the common variables.
Examples of direct-variable modes in the problem of Sec. 11 were m, through m, which
were for the non-catastrophic failure of the parts.

Reliability of a single mode is

Given: P(elg) e(w, u, = uw(z) for all w, and p(x)

elu(x)]

Je(x) p(x)dx .
X

Thus, mode reliability is obtained by an averaging, the expected value operation.

Obtain: P(e|x) = e(x)

R

P(e)

Figure 12-1 illustrates the development of this type of mode reliability description.
Reliability for multiple modes is
Given: P(ej|gf, u) = ej(g), u, = uw(g) for all w, and p(x)

Obtain: P(ej|gf, x) = ej(g) = ej[g(ﬁ)]
m
R="P(e) = [ [ e, (x)] p(x)dx (12-2)
x 3 3
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P(e|u) u

p(x) P(e|x)

Figure 12-1 Direct-Variable Mode
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Environments u in these modes for electronic parts typically would be stresses
such as current, power, or temperature. The deterministic equations u, = Uw(ﬁ) could
be conventional electronic equations for obtaining stresses. Note that it is possible
the mode reliability may be conditional on an environment where the environment is
also a common variable, or some u, = X. This was the situation in the problem of
Sec. 11 where the reliability of mg was conditional only on temperature, and tem-
perature also appeared in environment and performance euqations. The direct-variable
‘modes are where the type of environment information presented in MIL-HDBK-217A

[Ref. 27] would be applicable, but note that this reference infers explicit treatment
of time which has not yet been introduced here and it always assumes mode independence
at fixed environment levels, as did the problem of Sec. 1l.

Bound-Crossing Mode. The reliability of a single bound-crossing mode is the

probability that a performance attribute y remains within designated bounds Fy

Bounds are established either on the basis of judgment or on a more theoretical basis
such as a condition for oscillation of an electronic circuit oscillator or for a
stress-strength problem. Each performance attribute is a function of the common
variables x. Examples of this mode in the problem of Sec. 11 were modes m, and my
for the output voltages.

Reliability of a single mode:

Given: y = y(x), p(®), I_=Tp <y <T

y

P(b) = [ plx)dx.
FY

Thus, the region in x such that FZ < y(x) < Fu is the probability of success.

Obtain: R

Fig. 12-2 illustrates the development of this type of mode description.

Reliability of multiple modes is:

R=P(® =) p®dx, (12-3)
r
¥
where
v, = yv(i) and Fﬂ <y, < Fu for all v.

An important point to note for the bound-crossing mode is that treatment of
this mode does not involve the expected value operation. Rather, the bounds on the
performance attributes ' yields two complementary regions in the common variables
x, with probability density p(x); values of x in one region will result in failure

and values of x in the other region will result in acceptable performance.
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y p(x)

p(y)

P(b)

Figure 12-2 Bound-Crossing Mode
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Discussion of computation, i.e., transformation, method of moments, and Monte
Carlo for obtaining the reliability of this type of mode description was contained in

mode m, in the problem of Sec. 11.

12.1.4 Composite Model
The three types of failure mode descriptions of Sec. 12.1.3 are brought together
into a composite series model where the occurrence of any failure mode will mean
_system failure. Consider first the direct-fixed modes.
£

P(d) = I P(di|g_') where 0 < P(dilg') <1.
i=1

If there were no dependencies between any of these modes, then the resulting product
of mode reliabilities would be the simple model which is so widely assumed for re-
liability of items in serial logic.

Bring in the direct-variable modes:

P(d, & = P(d Ple|d
m
= 1 p@.]d") [ 1 Peld, e', v px|ddx
i=1  * x3=1 3
where
Ple,|d, e', u) =e (W, u = u (x) for all w .
k| ] W W

The multiple mode descriptions above are expressed conditionally on other direct-
variable modes. A reason is that several different modes may apply to the same
physical item. For example, if a two terminal electronic part has the open and short
failure modes explicitly treated, then the part can either fail by (open) or
(shortlno open) or vice versa. This possibility was not explicitly treated in the

problem of Sec. 11. Introduce the bound-crossing modes for the complete model

R =P, e, b) = P(d) Ple, bld)

L m

= 1 P(d,[d") / noPe ld,e', w pxlddx (12-4)
=1 ' Hx"Cr ) el J

where x = (x', x'), Yy = yv(gﬁ), x' do not appear in any Yy = yv(§ﬁ), and

Tz <y, < Fu for all v , and the supporting information noted above for the

direct-variable modes still applies.
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Equation 12-4 is the composite reliability prediction model. This is the
general functional notation counterpart of the specific problem functional notation

reliability prediction model which was formulated in Sec. 11.

12.2 Numerical Calculation

An approach for numerical calculation of the composite reliability model
using Monte Carlo simulation is shown in Fig. 12-3. Step (3) in Fig. 12-3 can be
omitted by using n instead of ¢ in the denominator of step (4) if no estimate is
wanted of the reliability of bound-crossing failures. It is also possible to obtain
an estimate of the dispersion of the distribution of reliabilities, although this is
not shown on Fig. 12-3.

Another approach for numerical calculation would be to use a discrete approxi-
mation of the complete region of the common variables x instead of sampling the
region. Figure 12-4 shows this approach. A grid network would be established cover-
ing the complete region and resulting in discrete cells. This approach would be useful
where some of the input information would be obtained directly from testing at the
nodes of the grid network. A discrete approximation approach would most likely be
applied to a limited number of common variables. 1In an experimental application of
notions similar to these in Part IV to a tilt-stabilization platform, temperature
and input voltage were considered as common variables [Ref. 24]. A discrete
approximation approach was used of the region of temperature and input voltage, where
testing was conducted at each node to obtain input information for a bound-crossing
failure mode.

Any realistic application of the concepts in Part IV would utilize a modern
digital computer. It is not felt that numerical computation would be the most limit-

ing factor in realistic applications.
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Generate
@ Sample common variables p(x|d) (3

Compute estimate of prob-
ability of no bound-
crossing failures

n samples
of x

£

P(bld) =

@) Determine if any bound-crossing failure for

each sample 4j
c successes (all Yy

r < yv(g) < Fu. for all v

within respective bounds)

. x for each of c successes
y

(4) Compute probability of no direct-variable failures for each sample
and average these
P (e . |Q)E' 9_&]
1 J
c

I =8

z [
C

Plelp,d) = <7

(5) Compute probability of no ditect-fixed

failures
2
P(d) = TNP(d,]d")
i i

Y ,

(6) Compute estimate of overall reliability

R = P(@) P(b|d) Ple|b,d ’

Figure 12-3 Monte Carlo Simulation for Approximate Numerical Calculation
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Approximate common variable joint density

){P(_’Eli)di = 1= IP (x|]d) = 1

where z = cell

Determine if any bound-crossing failure at X for each z

e
FE < Yy (x) Fu for all v

no, call z'

y

yes, drop (x)
for these z

Compute probability of no bound-crossing and direct-variable modes

m
el = z [T e lden 0] B, )

zl

Compute overall reliability by considering direct-fixed modes

3
R = P(b,e,d) = [n P(d ]d')] P(b,e|d)
- i=1 17 -

Figure 12-4 Approximate Numerical Calculation Using

Discrete Approximation of Common Variables
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12.3 Additional Considerations
Questions naturally arise concerning extensions to explicitly treating
time and to parallel situations. The essence of the approach has been illus-
trated thus far, and brief comments are given below on these questions. The
comments are brief and qualitative because mathematical notation becomes even
- more complex. Some key features are noted which would be useful to one seriously
pursuing the problem. That is,; one will have to develop the detail and these features

_are noted for guidance.

12.3.1 Explicitly Treating Time

As might be expected, explicitly treating time in the series situation
model is a reasonably straightforward extension of the approach used in Sec. 12.1.
The concept of common variables and of the three types of mode descriptions remains
unchanged. Mathematical descriptions of reliability measures as functions of time
for the direct modes would be as described in Secs. 4.2 and 4.3 and of time-varying
probability density functions for common variables and performance attributes would
be as described in Sec. 5.4. Thus, for common variables the time dependence is
denoted by p(x; t) and for a particular variable xs(t) = xs(§3 t) for all s, where p(a)
is the pdf of the constants, a = (al, By, cees an).

Nothing unique exists about the direct-fixed mode. There would be great
practical difficulty in obtaining the direct-variable mode reliability descriptions

conditional on a time-varying environment
P[ej(t) Ig’ E' s H(t)] .

This would result from the general situation that a large variety of possible forms

of u(t) are possible. It is, therefore, difficult to develop tables or other standard
information for general use with time-varying environments. A situation which is more
practical is where the direct-variable mode reliabilities are functions of time, but
the probability densities of the common variables and thus the time varying environ-
ments are not functions of time, i.e., conventional failure rate graphs of Ref. 27.
The bound-crossing mode will have the unique feature that there could be a specific
failure time for each possible value of a (where a is that noted above for the common
variables). This will have the effect of entering into the composite model as trun-
cations on the reliability time-functions of the direct-variable modes. Both mono-
tonic and some non-monotonic performance attribute variations could be treated, as

they both become first-crossing problems.
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12.3.2 Parallel Models

The situation where the occurrence of certain failure modes does not mean
system failure will be referred to as the parallel one. Before proceding to more
involved considerations it is pertinent to note that the expected value operation
as cited in Sec. 9.1 can be applied to conventional reliability models for redundancy
where the environment is a probabilistic variable. This straightforward approach is
useful in certain practical problems. Where the complexities of Sec. 12.1 are present,
branching modeling concepts could be used. First, the series situation model of 12.1
would be structured where there are no failure modes. For other non-failed system
states some of the input information may be different than for the system-state where
there are no failure modes. For instance, some common variables could take on values
of zero, and performance attribute and environment equations could change. System—
state change sequences would have to be traced, and a detailed reliability prediction
model developed for each sequence. Where time is explicitly treated, the time that
system-state changes will occur is an explicit variable, and time-wise convolutions
could be used in tracing through the detail. Thus, explicit treatment of time in

redundancy situations would significantly increase complexity.
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13. Concluding Remarks for Part IV

Each number below refers to the corresponding question noted in the introduction
to Part IV. Replies to these questions are intended to serve as concluding remarks
to Part IV. The replies take into consideration mainly the material presented in
Part IV.

, (1) The first question concerns the conventional assumption of probabilistic
independence in reliability models. The probabilistic dependence treated in Part

IV results from various sources. Consider first the series model: (a) the most
“straightforward dependence occurs in the given conditional probabilities in the direct-
fixed and the direct-variable modes. (b) the common variables can bring about depend-
ence among direct-variable modes in addition to that noted in (a), dependence

among bound-crossing modes, and dependence between direct-variable and bound-crossing
modes.

Also to be noted here is to avoid confusing probabilistic dependence with error
in structuring the problem. Where there is a deterministic relation y = y(x) between
a performance attribute and common variables, and if some of the common variables
were forced to be treated as modes in that some judgment-based bound was put on each
of these common variables and the functional relationship ignored, then simply the
erroneous reliability prediction would be obtained. Additional dependence is introduced
when a general parallel model is developed as features of the series model may be
conditional on the system state.

(2) A key feature in structuring the composite reliability prediction models
of Sec. 12 is recognition of the distinction between failure modes, common variables,
performance attributes, and environments. This distinction is of the sort which
tends to be obvious in hind-sight but was not beforehand. A distraction seems to
be a tendency to want to treat separately different real-world features which are
really mathematically similar in the sense of structuring the composite reliability
prediction model. For example, for electrical equipment there is a tendency to separate
the internal part characteristics from the interface characteristics.

(3) The typical deterministic equations of engineering have been divided into
two categories, those concerned with performance attributes and those concerned with
environments. The performance attribute equations are used for the bound-crossing
mode. A performance attribute may be either an output of the system or it may be
some internal performance of the system. The latter is not of interest to the system
user, but there may be certain bounds within which the internal performance must
remain or else the output(s) of the system, which are of interest to the user, will

be affected. The environment equations are used in the direct-variable mode.
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4) The discussion in Sec. 10 illustrated that there is no l-to-1 correspondence
between classification of a failure at a point of repair (source) into catastrophic
or degradation and a similar two-way classification of the manner in which the system
performance is affected. The models which are developed in Sec. 12 are based on
a classification system concerning the mathematical manner by which an individual
failure mode is described, and do not emphasize the classification system of catastrophic
and degradation failures.

(5) The composite models developed and presented in Sec. 12 show how the various
features are brought together. These composite models do not resemble the more familiar
prediction models which are widely used. Bringing the various failure mode types
and common variables together for even a simple series situation is shown to be com-
plex. Note also that the composite model includes many of the single-item reliability
measures of Part II and the conventional reliability models of Part III.

(6) The complexity of the composite reliability models in Sec. 12 and the gen—
eral lack of necessary input data combine to support the current practices of using
simpler models. It is possible that there may be problems where some features of the
composite model would offer some return which would be worth the effort. Certain
relatively simple systems which have high safety implications might warrant more com-
plex analyses. An example might be relatively simple devices concerned with explosives,
such as detonation circuits. The need for high reliability might justify the efforts
necessary to develop the appropriate data. Another possible application area would
be at a systems level with regard to redundancy. This would be as discussed in
Sec. 12.3.2 concerning the use of the expected value operation for redundancy where
some features of the composite model are dropped. In some situations there may be
some value in using features of the composite model in efforts to achieve balance in
design with regard to efforts to reduce various failure modes. 1In such cases little
emphasis would be given to the absolute numerical value of the reliability prediction
number, but rather the values would be compared for different design approaches. Also
note that in a real-world problem, it may be that only a small number of the variables
present in the problem will require treatment in the depth implied by the detailed
model.

Generally speaking, experimental applications and further investigation are
necessary in order to determine if more complex reliability prediction models along
these lines have anything to offer in a practical sense. Of course, before such
investigations can be attempted 1t is necessary that an approach to structuring the
problem be developed, and this necessary first step was an objective of the investi-

gations reported in Part IV.

138



Motivation for pursuing detailed reliability prediction models includes main-
tainability objectives as well as reliability ones. A detailed reliability model
might eventually be useful for maintainability improvements concerning automated
predictive maintenance, test point selection, and repair procedure development. These
potential maintainability uses would generally require models for parallel con-

" figurations.
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APPENDIX
Mathematics of Prediction - Probability

The calculus of probability plays an important part in the prediction of
system reliability. The basic definitions and distribution theory (discrete and
continuous-univariate and multivariafe) play a basic role. The Boolean algebra and
the calculus of probabilities provide the appropriate analytical tools for manipu-
lating these probabilistic inputs. In the calculation of a probability of system
behavior there is little choice in the simplifying approaches that can be taken
éxcept to use some of the reliability bounds and approximations. Even to use these
techniques requires a formal introduction to the basic methods and a thorough under-~
standing of the assumptions implied in their use.

In order to make the written material as brief as possible summary tables
have been prepared to cover specific topics such as continuous variables, Boolean
algebra, calculus of probabilities, etc. Supporting each of these tables are cited
references, discussions and examples demonstrating the techniques in the correspond-
ing table. Appendix references are contained along with all other references in the

single reference section.
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A.1 Continuous Random Variables and Distributions

A continuous random variable is typically one that can take on any value in an
interval. For example, the lifetime of a transistor under a certain set of test
conditions could be any time greater than zero. For a very large population of
transistors one would expect the lives to be scattered or distributed over a large
interval of time. Continuous distribution functions are used to describe such
statistical behavior. Table A.l1-1 summarizes basic concepts concerning continuous
random variables and their distributions. A summary of several common distributions
is presented in Table A.1-2. Given a density function p(x) the characteristics can

be evaluated by application of the formulae in Table A.1l-1.

Central Limit Theorem

One of the most important results in statistics is the central limit theorem (CLT)
which states that if X5 x2, <. X are independent random variables al® having the

same distribution function F(x) with mean u and standard deviation ¢, then the sum

is asymptotically Normally distributed with mean np and standard deviation 0/5; i.e.,

0
P(s < so) - -1 J exp{ E:%— (s - nu)2lds
V27 ovn on

-00

for n sufficiently large. This result is true under very general conditions on F(x);
if all variables have the same distribution then it is sufficient that the second
moment of x be finite. A more general form of the CLT and additional discussion of
the above case appear in Ref. 52.. An important aspect of the theorem is how large

n must be before the normal approximation applies. Clearly this dependence on n 1is
conditioned by the shape of the distribution. Sums of variables having highly

skewed distributions would tend to Normality more slowly than for those having
symmetrical or more nearly Normal distributions. In the latter case sums of variables

with n larger than 25 or 30 are very closely approximated by the Normal distribution.
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Table A.1-1
Continuous Random Variables And Distributions

1. x is a random variable (r.v.) having density function p(x) and

*
(cumulative) distribution function F(x).

x
2, F(x) = fp(t)dt (t is a dummy variable) and
- dF (x)
p(x) e
3. Property: F(-=) = 0; F(«») = 1.

4. Specifically for the range R over which x is defined

fp(x)dx = 1.
R
a
5.  Probability: P(x < a) = [p(x)dx = F(a)
b
P(a <x <b) = [p(x)dx = F(b) - F(a).
a
6. Expectation: For any function g(x),
Elg(x)] = [g&x) p(x)dx.
R

7. Mean of x (first moment about the origin):

E(x) = [xp(x)dx = v..
1
R
8. Mean square of x (second moment about the origin):
E(x?) = [x2p(x)dx = wv,.
R
9. k-th moment of x with respect to the origin:
E(xk) = kap(x)dx = V-

R

*
In precise mathematical notation, X is used to denote a random variable, then
F(x) = P(X < x), and for a continuous variable P(x)dx = P(x < X < xtdx).
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10. Variance of x (second moment about the mean):

E{[x-E(x)]?} = o?(x) = £[x-E(x)]2p(x)dx = u,.
11. k-th moment of x about the mean:
E{[x-E(x) ¥} = }{[x—E(x)]kp(x)dx = .
12. Relationship between the first four moments:
g = Vg = 1
LS 0 b
Wy = v, - vi, v, = mean value of x
My = v3 - 3v2vl + Zvi
My = oV, - 4v3v1 + 6v2v1 - 3v;.

13. Truncated distribution, FT(x), of F(x):

F,.(x) =

F(x)/F(T)
1

Example

Let x be a random variable with density function
-AX
p(x) = Ae ,

This 1is the well-known Weibull density function with ©
or the negative exponential density function.

oAt %,
Distribution: F(x) = fle dt =
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Probability: P(1 < x <2)
or

F(2) - F(1)

Mean: E(x)

Variance: 02 (x)

k-th moment about the origin:
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A.2 Discrete Random Variables and Distributions

A discrete random variable is one that takes on a finite or a countably infinite
number of values. For example, a binomial variable takes on two values corresponding
to a success or a failure, such as tossing a coin and the occurrence of a head being a
success. On the other hand, the number of telephone calls on a given line for a
specified time may be approximated by a Poisson variable for time intervals of
"constant density". The number of calls might be considered to take on any one of a
countably infinite number of values, 0, 1, 2, ..., etc.

Table A.2-1 summarizes the definitions and notation for the characteristics of
distributions of discrete random variables. Table A.2-2 contains some of the common
discrete distributions and the means and the variances. Ref. 53 contains a complete

discussion of many discrete random variables and the pertinent characteristics.

Example

Suppose that it is desired to obtain the probability of three or fewer
failufes in a time interval of length t where an item upon failure is
replaced by a new item. Suppose further that the exponential failure
time distribution is applicable. Let the failure rate be A = 0.01/hour
and the time be 200 hours.

From the above information the mean or expected number of failures is
2 items. Furthermore the probability of x fallures is given by the
Poisson formula and thus for three or fewer failures the probability
is expressed as

20 2,1 -22 =23
P e = S+ S+ 5 + &5
= 0.8569.
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A.3 Multivariate Distributions (Emphasis on Bivariate Case)

Consider the situation in which two or more measurements on a part are being
obtained, e.g. the equivalent h-parameters of a transistor. These two measurements
would have a joint probability density function (pdf) p(x, y), say, where x and y
denote the respective measurements. If the two variables are statistically independ-

ent then
p(x, y) = p;(x) Py (¥),

and hence the joint density functions can be written down knowing the individual pdf's.
If the variables are not independent the multivariate density function can be obtained
by assuming a particular form such as the Normal density function and estimating the
unknown parameters from available data.

Most of the properties of bivariate (two-variate) distributions are straight-
forward generalizations of the univariate distributions given earlier. The new
concepts are those of conditional and marginal distributions, covariance and correla-
tion. The generalization of these results to multivariate distributions is easily
made and one should see Ref. 51 for these results,

Independent Random Variables. If two variables x and y are independent then

the covariance of x and y, denoted by Cov(x, y) is

covtx, 3 = [f B0 5,0 G-EGY) pyaxy = o.

However the inverse is not true, i.e. two variables may have zero covariance (or zero

correlation i.e. p(x, y) = 0) but not be independent. For example, suppose that
u and v are independent variables, and let x = u + V, ¥ = u-v. Then
E(xy) = E(u?2) - E(v®) = 0, E(y) = 0, and
Cov(x, y) = 0 and p(x, y) = 0.

However, x and y are dependent. See Ref. 17 for additional examples. Thus the
correlation is not a general measure of dependence but rather a meacure of linear
dependence of two variables in physical terms; the correlation coefficient is a

dimensionless covariance.
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Table A.3-1

Bivariate Distributions

1. Let x, y be a pair of random variables having the joint distribution function

F(x, y) and density function p(x, y).

2. ffp(x, y) dxdy 1, where R is the region over which x and y are defined.
R

y X
3. [ [plu, v)dudv = F(x, y).
b Fm ) = 0BG, = L
oF
5. p(X, y) = .__ﬁL_ll .

0xdy

6. P(a<x <b,c<y<d = p(x, y)dx dy

0 —a
© — o

F(b, d) + F(a, ¢c) - F(a, d) - F(b, c).

7. E@(x, ) = [[a(x, y) p(x, y)dxdy.
R
8. E(x) = fjxp(x, y)dxdy.
R
9. If x and y are independent random variables (r.v.'s) then
p{x, y) = p;(x) py(y) and
E(x) = fx pl(x)dx and E(y) = fy pz(y)dy.
10. E(xy) = ffxy pl(x) p2(y)dxdy
R
= E(x) E(y) if x and y are independent r.v.'s.
11.  E(x - E(x))?2 = o2(x), E(y - E(y))? = o%(y).
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12. E{(x -EXx))(y - E(y))} Cov(x, y) = Covariance of x and y

= [[Ix - E®)]ly - E(y)] p(x, y)dxdy.

13. Correlation of x and y = p{x, y} = Cov(x, y)/o(x) a(y)
where
1/2 1/2
o) = [02@1Y% and o(y) = (0212
14. Marginal distribution of x is given by
Pl(x) = f P(x, y)dy.
R
y
15. The conditional distribution of y for given x is given by
- P(x, v)
p(y|x) p, (0

pz(y) if x and y are independent r.v.'s.

Example

Let x and y have a bivariate density function

1 1 2 2
p(x, y) = ———= exp{- ——— (%% - 2cxy + y?)}.
2mv1-c? 2(1-¢2)
First of all note that
fﬁ)(x, y)dxdy = 1
R
since by completion of the square of the exponent
1 1 2 2
plx, y) = ———— ffexp{— —— (x“- 2cxy + czy )
2nY/1-c2 2(1-c?)

2-1
+ 5%112771 yz}dxdy.

If the variables are transformed as follows:

(x - cy)/V1-c2

[+
"

v =%y
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then

2 2
plu, v) = ii-ffexp{—( %{ + %r ) }du dv, (A.3-1)

using the fact that the Jacobian of the transformation is given by

2u 2u 1/v1-¢? -c/vV1-c?
X oy
B 1/ = 1/ = /1-c? .
v av
ax oy 0 L

(A-3.1) can be written as the product of the integrals

2 v2

@ o0 -
o fe 2du o 2 fe 2dv .
/2n Yom -

Since each is the integral of the standard Normal density function the above product
is unity.

Next the marginal distribution of y is given by

Py (y) = [p(x, y)dx
2
n

Hence the conditional distribution of x given y is

. Rx,y) 1 1 N2
p(x|y) = () = ) exp{—'zzijgzj (x - ey)}.

Mean, Variance and Covariance Formulas

Let X5 Xos vy X be n random variables with means Hyo Hos wees Mo and
variances oi, 0%, ceny oi respectively and correlations P1o (= p(xl, XZ))’ Pr3s ***»

Phel. n' The following results are true independent of the distributions of the
L

variables. Let y be a linear combination of the variables given by

y = ¢ + clx1 + c2x2 + ...+ cnxn.
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Then the mean and variance of y are denoted by uy and oi and are given by

n
My T o Sgtepup teuy et = et 121 L
2 - 242 2.2 2.2
Oy Clcl + c202 + .+ Cnon
+ Zplzclczolo2 + ...+ ZOn—l,nCn—lcnon—lOn
or
) )

2 = 2,2
g = csoc + 2 c.c,p,.0.0,.

y o1 14 i< ij ij i3

where ci is the standard deviation of the i-th variable. The above formulas are true
in general and one notes that the mean uy of y does not involve the correlations.
Now if the variables are uncorrelated (if they are independent as indicated

previously) the formula for the variance reduces to

0; = cioi + c%c% + ...+ cioi.
Now consider two functions

y = ) + clx1 + ... + ¢ xn

w o= RO + lel + ... + ann,

then the covariance of y and w is given by

n

n
= 2 2
Coviy, w} € 80] + ove e 802+ } ) 2.co.0

171°1 51 4214179 15

If the functions are not linear it is often possible to use a Taylor series
expansion of the function f(x) and then apply the mean and variance computations
to this form. These formulas must be used with care, e.g. by checking the magnitude

of the errors which may result in using them. Thus if

y = f®

then

g
1]

9X < i
1 'y

5 f 1 3%f
f(p) + ) e Ax, + E‘Z — Ax?
1
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2
+'% g#g 3;?553"E-Axiij, Axi = %

and hence using only the first order terms

My = £

o§ = Z( %;% )2 oi,

ik

where

po= Qs Mys eees M)
and where 3_f denotes the evaluation of the derivative at y .

Bxi "

The above results are summarized in the following table.
Table A.3-2
Mean, Variance, and Covariance Formulas

General Case for Single Function.

= + e
If y cy c1¥%; + c X, + + S
then uy = CO + cl“l + c2u2 + ... + Cnun = CO + g ciui
2 o 202
and oy g ¢ + g g Cicjcicjpij'

i#j

Variables Uncorrelated.

n
uy = CO + Clul + ... + Cnun = c0 + % Ciui
n
2 - 2.2
cy % Cioi'
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General Case for two functions.

Ify = <o + Z CyXy
and w = L.+ £.x
0 ij
then
)
Cov(y,w) = c,.0.0 .
=1 j=1 13133
If X, and xj are uncorrelated, i.e. pij = 0 for i # j, then
Cov(y, w) = Z cilioi.
General Case for single nonlinear function.
Ify = y®,x = (x, cees X))
then using only a first order approximation
uy = y(u), g = (ul, ey un), vector of means,
and
2 . 3y 2 .2
%y z(sxi u) %"
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A.4 Calculus of Probabillities

Starting with certain definitions and axioms several useful theorems of the
calculus of probabilities can be derived. Eight such theorems are given in Table A.4-1
A major difficulty in reliability literature stems from the notion of statistical
independence, often called just independence. This notion is basic to many reliability
calculations, for it is often assumed in these calculations that the failure of omne
item in a system is independent of the failure of all other items in the system. In
non-probability language, two events are said to be independent if knowledge of the
outcome of one in no way affects the outcome of the other event. The simplest example
of independent events i1s perhaps two tosses of a coin - the result of the first toss
in no way affects the outcome of the second toss, so the events are independent.

As a more pertinent example, suppose two amplifiers are selected at random from a
collection of 100 amplifiers from a production process. Does knowledge concerning
the value of current gain for the first amplifier alter in any way the probability
that the current gain for the second amplifier falls in any given interval? If the
answer is that it does not, then the two observations of current gain are independent.
In applications these results would usually be treated as independent because if the
current gain distribution were F(x), the observation of an 3 for the first amplifier
would not aid in locating the value X, for the second one as it presumably could fall
anywhere on the defined region R for x with the same probability distribution F(x) as
that for the first observation.

Consider as another example the measuring of the current gain Ye and the voltage
gain Yy of a single amplifier. Does knowledge of the value of current gain alter
information concerning the voltage gain? Chances are that it would because high
values of y, may correspond to higher than average (or lower than average) values of
Yy and vice versa. Thus it i1s normally assumed that such variables may be dependent
unless data analyses imply otherwise.

Similar examples can be considered in the reliability prediction area. If the
event of failure of one of two items in parallel in no way affects the failure
behavior of the other item the two events are independent. On the other hand if
failure of one would alter the probability distribution of failure time of the
second item the two events of failure are dependent.

In probabilistic terms the above discussion can be summarized as follows.

A and B are independent if

P(B)

P(B|A)

and hence

P(AB) P(B|A) P(A) = P(B) P(A),
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where P(BIA) is read "the probability of the event B given the event A has occurred."
Another consideration with respect to independence is that of statistical
independence and conditional independence which has been denoted as physical
independence in Ref. 54.
Two events A and B are said to be conditionally (physically) independent if
and only if they are statistically independent under environment Ei, that is,

P(XY|E) = P(X|E,) P(Y|E,)

Physical (conditional) independence does not necessarily imply statistical independence
of the unconditional events X and Y. In order to compute the reliability of a system
one usually obtains the conditional probabilities (that is, given the environments)

and then obtains the weighted average of these conditional probabilities using the
P(Ei) as the weights. In mathematical terms

P(XY) = ) P(XY|E,) P(E,),
i
or
P(XY) = ] P(X|E,) P(Y|E) P(E,).
i

Frequently in reliability prediction the mission is subdivided into phases in each
of which the environment is essentially constant throughout the entire phase. Hence
one uses a formula such as the above. A more complete discussion of the concepts of

physical and statistical independence appears in Ref. 48 and Ref. 54.
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Table A. 4-1
Calculus of Probabilities

Definitions and Axioms

P(A) = Probability of A

0 <P(A) <1

P(Sure Event) = P(I) = 1

P(An Impossible Event) = P(¢) = 0

P(A+B) = P(A) + P(B) - P(AB)
P(B|A) = Probability of B on the hypothesis that A has occurred
P(AB) = P(A) P(B|A)
Theorems
P(A+A) = P(A) + P(A) = 1
P(A) = P(AB) + P(AB)
P(A+B) = 1 - P(AB)
P(Aj+A,+ <+ +A) = P(A)) + B(4)) + ot 4+ P(A)
- P(A1A2) - P(A1A3) - tee - P(An_lAn)
+ P(AjAAL) + ot
+ (DL paa, o0 A)
12 n
P(AJA, *+* A) = PB(A) P(ay|A) P(A3|A1A2) oo P(An|A1 er A
If Al, s, An are all mutually independent events, then
n
P(AlA2 s An) = I P(Ai)
i=1
If Al, e, An are pairwise mutually exclusive i.e. AiAj = ¢ (null set)

for all pairs i, j =1, ..., n, 1 # j, then

n
P(Aj*A, + o+ +A) = 121 P(A)).

Bayes Rule -~ Let B be a collection of events which are mutually

¢ for 1 # j, and B, + B, + *** = I,

1° Bz’ .e

exclusive and exhaustive, i.e. Bi . Bj 1 2
then
P(B A P(A|B,) P(B
po ) - (B4)  P(A[B,) P(B)
i P(A) IP(A[B)) P(B))
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Example

Consider the system reliability logic diagram shown below where the
symbols assigned to each element represent the event of success for that
element.

’__—__ Bl o
: N
[ S— — e
D
c —_
I =
|2 |2
Let the associated probabilities be PA) = P(Bl) = P(BZ) = 0.95,
P(C) = 0.98, P(D) = 0.90, P(El) = P(EZ) = 0.90.
Let P1 denote the path A, Bl
p2 A, B2
P3 C, D
P, C, E, E,.

Then the probability of success is the probability that at least one of the

paths Pl’ iy P4 is "good", that is,

P(S)

P{Pl + Pz + p3 + P4}

P{Pl} + P{Pz} + P{P3} + P{P4}

- P{PlPZ} - P{P1P3} - P{P1P4} - P{P2P3}

P{P3P4} - P{P2P4}
+ P{P1P2P3} + P{P1P2P4} + P{P1P3P4} + P{P2P3P4}

- P{P1P2P3P4}.
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Now P{Pl} = P{ABl} P{A} P{Bl} assuming independence of the events A and B, hence

(0.95)(0.95) = 0.9025

P{Pl}

Similarly the remaining probabilities are obtained.

P{Pz} = 0.9025
p{P,} = 0.8820
p{p,} = 0.7938
P{Ple} = P{ABlABZ} = P{ABle} = 0.8574
P{P1P3} = P{ABlCD} = 0.7960
P{P2P3} = P{ABZCD} = 0.7960
P{PZPA} = P{ABlCElEZ} = 0.7164
P{PlPa} = P{A31CE1E2} = 0.7164
P{P3P4} = P{CDCElEz} = 0.7144
P{P1P2P3} = P{ABlABZCD} = P{ABlBZCD} = 0.7562
P{P1P2P4} = P{ABlABZCElEz} = P{ABlBZCElEZ} = 0.6806
P{P,P,P, } = P{ABlCDCElEZ} = P{AB,CDE;E,} = 0.6448
P{P2P3P4} = P{ABZCDCElEz} = P{ABZCDEIEZ} = 0.6448
P{P1P2P3P4} = 0.6125
Hence
P{s} = 0.9981.

It should be noted that a particular kind of system redundancy is implied for the
success probability to be computed in the above way. Specifically, independence is
required of all failure events, which usually implies active redundancy in the system.
A computer program for performing a reliability prediction such as that above is

described in Vol. II - Computation.
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A.5 Boolean Algebra

In predicting the reliability of a system we are concerned with various events,
such as a performance measure lies between two given values, no failures in an
interval of time t, less than three defects in a sample of ten items from a lot of
material, etc. Such events will be devoted by capital letters A, B, C, etc. An
event is the result of an experiment and can be considered to be a collection of
possible outcomes of an experiment within the space of all possible outcomes. For
example, the selection of three or more good items from a lot of five items is an
event. The space of all possible outcomes contains 25 = 32 points in the sample
Space, correspond to all items bad, only one item good (5 points), two items good
(10 points), etc., -++, five items good (1 point). The event of three or more
good items corresponds to 16 of these 32 sample points. The basic definitions,
operations, and properties of Boolean Algebra are summarized in Table A. 5-1. This
summary covers only those introductory topics included in the first few chapters of
a text on the subject. Ref. 37 gives a complete discussion of Boolean Algebra and

its applications.

Example

Simplify the following expression:

[(11—?) + C] (E)
Applying the dualization law,

[(a+B) + C] (AC).
The distributive law yields

(ACA) + (ACB) + (ACC)
or

$ + (ACB) + (AC)

which is

(ACB) + (AC).

Since KCB:CKC, the above is equivalent to AC.
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Table A. 5-1

Boolean Algebra
(Algebra of Classes)

Notation, Definitions, and Logical Operations:
1. A sure event, an event which always occurs when an experiment or observation

is made, denoted by I.

2. An impossible event, an event which never occurs as an outcome of an experiment,

denoted by ¢.

3. The complementary event or complement of A, is the event that A does not occur,

denoted by A.
4, The sum or union of A and B, denoted by A+ B or AUB, is the event that at
least one of A and B occurs.

5. The product or intersection of A and B, denoted by AB or A N B is the event

that both A and B occur.

6. 1f occurrence of B implies the occurrence of A, then B C A.

7. If AB = ¢, then A and B are disjoint.

Let F0 be a family of events which includes 1 and which is used with respect

to the sum and product logical operations. Then events belonging to the field EO

satisfy the following relations:

A+ A = AA = A
A+B = B+ A, AB = BA
(A+B+C) = A + (B8+C), (AB)C = A(BC)
A(B+C) = AB + AC
A+A = I,AA = ¢
A+I = I, Al =
A+¢ = A, A = ¢.

Dualization Laws:

A+B = AB
AB = A+B.
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